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Abstract. We provide a shorter proof of the main result in Reny and Perry [7], by

establishing a lower semicontinuity property of auctions as the number of traders goes to

infinity, leveraging existence of equilibria in the limit “auction”. Our proof also eliminates

two of the assumptions in their paper.

1. Introduction

Reny and Perry [7] established that double auctions provide strategic foundations for

Rational Expectations Equilibria (REE) in a model with a large number of identical buy-

ers and sellers of copies of a single object, where each seller has one unit to sell and

each buyer has unitary demand. In particular, they showed that large but finite dou-

ble auctions, in an environment with quasilinear preferences, symmetric valuations and

distributions satisfying the strict Monotone Likelihood Ratio Property (MLRP), have

monotone equilibria whose clearing prices converge to the unique REE. Barelli, Govin-

dan, and Wilson [2] showed that the symmetry assumption is crucial: with unrestricted

heterogeneity among traders, large but finite auctions cannot even attain allocations close

to the REE, let alone have equilibria with outcomes approaching the REE outcome.1

We provide an alternative and shorter proof of Reny and Perry’s result, using degree

theory and asymptotic theory. Instead of circumventing the nonexistence of monotone

best replies due to rationing, as in Reny and Perry, we leverage the existence of an

equilibrium in the limit auction with a countable number of traders to establish existence

of monotone equilibria of auctions with a large but finite number of traders. The sequence

Date: June 2023.
1Specifically, the REE outcome is not in the image of the outcome function of any mechanism, like an
auction, that satisfies an “independence of irrelevant messages” kind of property.

1



2 P. BARELLI AND S. GOVINDAN

of equilibria, in turn, is shown to provide strategic foundations for REE. As our approach

is therefore based on a lower semi-continuity property of the equilibrium correspondence,

this note also has a methodological purpose of illustrating the power of degree theory in

obtaining such a property. We elaborate on this point in the next section.

We work in essentially the set-up of Reny and Perry, with risk-neutral traders with

unit demands and supplies for a single commodity. Interdependence of preferences is

routed through a one-dimensional hidden state. Traders’ private information is also one

dimensional, and independently drawn conditional on the state from a distribution that

satisfies strict MLRP. The double auction game is the standard uniform-price auction.

We do eliminate two of their assumptions. One, we do not assume private values at the

boundary (this is their Assumption A.4); and two, our result holds for all sufficiently

small bid increments and not just on a residual set of such increments.2

2. Degree Theory

Fixed point theorems naturally yield as a corollary the upper semicontinuity of the set

of fixed points as we vary the parameters of the problem. But sometimes we are interested

in the lower semicontinuity property of the fixed point correspondence. Specifically, if we

know that a game G has an isolated equilibrium, do all close-by games have an equi-

librium that is close-by? This question is relevant when the games under consideration

do not fall into a class where existence of an equilibrium can be ensured by standard

fixed-point arguments but we know from direct computation that one such game G has

an equilibrium. For instance, the games under consideration have discontinuous payoffs

and/or non-compact strategy spaces. For our purposes, we are interested in monotone,

non trivial pure-strategy equilibria of double auctions. The usual payoff discontinuities

are not a problem because we use bid grids with increments that go to zero as the number

2A previous version of [2] shows that the techniques used here allow us to obtain the result allowing for
some degree of heterogeneity among traders as well.
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of traders goes to infinity.3 But standard fixed point arguments give us only existence

of equilibria in strategies that are not necessarily pure, monotone, or non trivial. An

alternative avenue would be to explore the monotone properties of the environment: the

literature pioneered by Athey [1] has established that, if the expected payoff of a player

satisfies a single-crossing property when the other players employ monotone pure strate-

gies, then the player will have monotone pure-strategy best responses, and hence the

existence of a monotone equilibrium can be guaranteed. However, Reny and Perry [7]

demonstrated that this single crossing property fails in a double auction. Since it is rel-

atively easy to show that the limit auction (that is, the limiting game with a countable

number of traders) has a monotone non trivial equilibrium, if the equilibrium correspon-

dence is lower semi-continuous, then large-but-finite auctions will also have monotone

nontrivial equilibrium.

Degree theory is the appropriate tool for the study of the lower semi-continuity prop-

erties of the equilibrium correspondence. The degree of a map is an integer that reveals

some properties of the map.4 For instance, letting D and R be subsets of the same finite

dimensional space, say that the degree of a map f : D → R at y ∈ R is non zero, then

there must exist a point x ∈ D such that f(x) = y. One important property of the degree

is that it is preserved by local perturbations. If the degree of f : D → R at y ∈ R is one,

then the degree of fn : D → R at y is equal to one for all fn uniformly close to f . For our

purposes, the zero of f identifies an equilibrium of the limit auction and the zeros of fn

identify equilibria of large-but-finite auctions. By establishing that f has degree one at

zero, we immediately establish that each fn has degree one at zero (and hence that these

auctions have monotone non trivial equilibria) if we also establish that fn is uniformly

close to f . In general, using f as the displacement map of game (that is, the fixed point

map minus the identity map), the reasoning above establishes lower semicontinuity of the

equilibrium correspondence of a game.

3This is in contrast with the use of bid grids for a fixed population of traders – as the bid increments go
to zero, discontinuities may still arise in the form of atoms in the limit. See Bich and Laraki [3], proof of
Theorem 4.2, case c1, for a clever way of avoiding such a problem in a two-bidder auction.
4See Jezierski and Marzantowicz [6] for a formal treatment.
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Another important property of degree that is related to the continuity property men-

tioned above is that it is invariant under homotopy: the degree of g : D → R at y ∈ R is

equal to the degree of the homotopy (1− λ)g + λf for λ ∈ [0, 1] at y as long as the value

of the homotopy is not equal to y at the boundary of D. An implication that we explore

in our analysis below is that, since the degree of a homeomorphism is one, if we connect a

given map f to a homeomorphism g under a homotopy and establish that the homotopy

does not have a zero at the boundary, then we necessarily establish that the degree of the

zero of f is equal to one (and in particular, we establish the existence of x ∈ D such that

f(x) = 0, and, a fortiori, we also establish existence of xn such that fn(xn) = 0 for fn

uniformly close to f .)

An application of these ideas appeared in Govindan, Reny, and Robson [4], who used

degree theory to obtain a simple proof of Harsanyi’s purification theorem. If a game is

generic, all of its finitely many equilibria have nonzero degree. Hence, for a perturbed in-

complete information game, there exist equilibria close-by. Such equilibria are necessarily

in pure strategies, thus showing that all mixed equilibria can be approximately purified.

Apart from the obvious possibility of its use in more general large auctions settings,

a potential future application concerns the study of continuous-time games as limits of

discrete time games with frequent actions. The limit game is more tractable given that

we can use techniques from differential topology; degree theory, hopefully, provides a

theoretical justification for its robustness.

3. Model

We start with a base model of a double auction Γ and then we consider a sequence

of double auctions obtained by replicating the agents in Γ. The double auction Γ is as

follows. The set of buyers is TI with cardinality mI and the set of sellers is TII with

cardinality mII, so the set of m = mI +mII traders is T = TI ∪ TII. Buyers have unitary

demand and each seller has a unit to sell. Let µ1 = m−1mII and µ0 = 1 − µ1 denote the

fractions of traders who must end up with one and zero units, respectively.
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The set of unobserved states of the world is the interval Ω ≡ [0, 1]. For each trader

t ∈ T , the interval Xt ≡ [0, 1] is his space of signals, with typical element xt. Let

X ≡
∏

t∈T Xt, with typical element x. The prior probability distribution over Ω × X is

Q.

For each t ∈ T and ω ∈ Ω, Pt( · |ω) is the probability distribution over Xt conditional

on the state ω, and Q( · |ω) is the conditional distribution over X . We assume symmetry,

so Pt( · |ω) ≡ P ( · |ω) for all t ∈ T . The marginal distribution on Ω is P0. The common

valuation of a unit is a function v : Ω × Xt → R+ of the state and signal. That is,

interdependence of preferences are rooted through the hidden state ω. We make the

following assumptions on Q and v.

Assumption 3.1. The prior distribution Q satisfies the following conditions.

(a) Q has a continuously differentiable and strictly positive density q.

(b) The conditional distributions P ( · |ω) over the xt’s given ω are independent, i.e.

q(x |ω) is the product of the densities p(xt |ω) of P (xt |ω) for t ∈ T .

(c) The common density p(xt |ω) satisfies the strict monotone likelihood ratio property

(MLRP).

Recall that strict MLRP means that
p(x′

t |ω
′)

p(xt |ω′)
>

p(x′

t |ω)

p(xt |ω)
for x′

t > xt and ω′ > ω.

Given the above assumption, we view Q( · |ω) as the conditional CDF and thus write

Q(x |ω) for Q(
∏

t[0, xt] |ω), and P (xt |ω) for P ([0, xt] |ω).

Assumption 3.2. The valuation v satisfies the following conditions:

(a) v is positive and twice-continuously differentiable;

(b) ∂v(ω,xt)
∂ω

> 0 and ∂v(ω,xt)
∂xt

> 0.

For each n = 1, 2, . . ., Γn is the n-fold replica of Γ. Specifically, the set of traders is T n,

which has nmI buyers and nmII sellers, for a total of nm traders and µ1nm objects for

sale.5 The set of states of nature remains Ω but the signal space is Xn, the n-fold product

5We keep the fraction µ1 independent of n for simplicity of notation. We could allow for a ratio µ1(n)
that depends on n, so long as there is a well-defined limit that is strictly between 0 and 1.
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of X . The distribution Qn over Ω×Xn is generated by the distribution P0 on Ω, as in Γ,

and the conditionally independent distributions P (xt |ω), for t ∈ T n.

Turn now to the rules of the double auctions. Traders observe signals and submit bids

in R+. The bids in a profile bn are ordered b(1) > · · · > b(nm), where b(k) is the k-th

highest bid. If b(nm1) > b(nm1+1), each buyer (resp. seller) bidding at least b(nm1) gets to

buy a copy of the object (resp. does not get to sell his copy) and each seller (resp. buyer)

bidding below b(nm1) gets to sell a copy of the object (resp. does not get to buy a copy

of the object). In the event of a tie, i.e. b(nm1) = b(nm1+1), those bidding above b(nm1) end

up with a copy of the object and allocations are made randomly among those tied. The

price at which trade occurs is ̺n(bn) = αb(nm1) + (1− α)b(nm1+1), where 0 6 α 6 1.

A pure strategy for trader t ∈ T n is a measurable map σn
t : Xt → R+. Given a profile

σn of pure strategies, the payoff to a buyer t in Γn from bid b can be written as

πn
t (b, σ

n; xt) =

∫

Ω

τnt (b, ω, σ
n)[v(ω, xt)− ̺nt (b, ω, σ

n)]dP (ω | xt)

where τnt (b, ω, σ
n) is the probability that trader t trades in ω if he bids b and others play

according to σn, with ̺nt (·) being the expected clearing price for this event. The payoff

for a seller is defined analogously. Hence σn is an equilibrium if for every t and for a.e. xt

under the marginal of Qn on Xt,

πn
t (σi(xt), σ

n; xt) > πn
t (b, σ

n; xt)

for each b ∈ R+.

We focus here on monotone and symmetric pure strategies. A pure strategy profile

σn is monotone if for each t ∈ T n, σn
t is monotone in xt. It is symmetric if for each

pair t, t′ ∈ T n such that either both of them are buyers or sellers, σn
t (s) = σn

t′(s) for all

s ∈ [0, 1]. A symmetric pure strategy profile can thus be represented by two functions

σn
I , σ

n
II : [0, 1] → R+, where σn

I (resp. σn
II) is the strategy employed by all buyers (resp.

sellers). We shall still use σn to denote a symmetric pure strategy profile.

For each n and ζ > 0, let Γn,ζ be the game where the set of bids is restricted to

be { 0, ζ, 2ζ, . . .}. The game Γn,ζ obviously has an equilibrium in behavioral strategies.
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Reny and Perry [7] showed, as will we, that for a fixed grid size ζ , Γn,ζ has a symmetric

monotone equilibrium in pure strategies if n is large.

3.1. The Limit Economy E∞. A limit competitive economy E∞ is obtained as follows.

Let X∞ = X×X×· · · , where X =
∏

t∈T Xt is the space of signals in Γ. The denumerable

set of traders is T∞ ≡ limn↑∞ T n. Each seller has one unit to sell and each buyer wants

one unit. The valuation of each trader is the function v from Γ. Let O be the Borel

σ-algebra on Ω; and let X∞ be the product σ-algebra on X∞, using the Borel σ-algebra

on each factor. Q∗ is the probability distribution over (Ω×X∞,O⊗X∞) for which P0 is

the marginal on Ω and for each ω, conditional on ω, the distribution over X∞ is a product

distribution with the distribution over Xt being the same for all traders and equal to the

one from Γ.

A state of E∞ is given by (ω, x∞). A price map is a random variable φ : Ω → R+. Given

φ, the valuation of the object for a trader with signal s is a random variable E(v(·, s) | φ) :
Ω → R+, where the expectation is w.r.t. P ( · | s) and is conditional on the σ-algebra

generated by the price function φ. Observe that this expectation is strictly monotone

in s, since v is strictly increasing in s and P ( · | s) satisfies strict MLRP; moreover, it is

continuously differentiable in s. If t is a buyer (resp. seller) with signal s, his demand

Dt(ω, s, φ) is 1 or 0 (resp. 0 or −1) depending on whether E(v(·, s) | φ)(ω) is greater or

smaller than φ(ω).

Given φ, excess demand is a function Z(ω, x∞, φ) defined for each state of the economy

(ω, x∞) by

Z(ω, x∞, φ) = lim
n→∞

1

n

∑

t∈Tn

Dt(ω, xt, φ).

This function is well-defined by the Strong Law of Large Numbers. A price function φ is a

Rational Expectations Equilibrium (REE) if Z(ω, x∞, φ) = 0 for Q∗-a.e. (ω, x∞). An REE

φ is fully revealing if it is strictly monotone. We now describe an REE of this economy.

For each ω ∈ Ω, let s∗(ω) be the unique s ∈ [0, 1] such that P (s |ω) = µ0. Because the

density is continuously differentiable and satisfies strict MRLP, s∗(ω) is well-defined and
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differentiable in ω. Define φ∗ : Ω → R+ by φ∗(ω) = v(ω, s∗(ω)). At the price φ∗(ω), all

buyers with signals higher than s∗(ω) will demand one unit and all sellers with signals

less than s∗(ω) want to sell one unit and the markets clear. By the SLLN, the excess

demand function is a.e. equal to µ0−P (s∗(ω) |ω). Thus φ∗ is an REE, and it is also fully

revealing.6

3.2. The Limit Auction Γ∞. As we are focusing on symmetric pure strategy profiles,

there is a well-defined auction game Γ∞ with the player set T∞. The probability model

is the same as for E∞. As in Γ, a symmetric pure strategy profile is again given by a pair

(σI, σII) with σI (resp. σII) being the common strategy used by all buyers (resp. sellers).

Let us still denote it by σ. Given such a profile, we define

̺∞(ω, σ) ≡ sup{ b |µ0P (σ−1
I ([0, b] |ω) + µ1P (σ−1

II ([0, b] |ω) 6 µ0 }

with the convention that the supremum of the empty set is 0. As for allocations, a trader

gets a copy of the object when his bid is above ̺∞(ω, σ) and does not get a copy when his

bid is below ̺∞(ω, σ). For a generic buyer, identified by the subscript I, the probability

τ∞I (b, ω, σ) that he gets a copy of the object bidding b = ̺∞(ω, σ) is given by the equa-

tion [µ0P (σ−1
I ({ b }) |ω) + µ1P (σ−1

II ({ b }) |ω)]τ∞I (b, ω, σ) = µ1 − [µ0P (σ−1
I ((b,∞) |ω) +

µ1P (σ−1
II ((b,∞) |ω)]. For a generic seller, identified by the subscript II, the proba-

bility is given by the equation [µ0P (σ−1
I ({ b }) |ω) + µ1P (σ−1

II ({ b }) |ω)]τ∞II (b, ω, σ) =

µ0 − [µ0P (σ−1
I ((0, b) |ω) + µ1P (σ−1

II ((0, b) |ω)]. Observe that if b is not an atom of σ

then the choice of τ∞i (b, ω, σ) for b = ̺∞(ω, σ) and i = I, II is immaterial.

The payoff to a buyer I and signal xI from a bid b against a symmetric profile σ is

π∞
I (b, σ; xI) =

∫

Ω

τ∞I (b, ω, σ)[v(ω, xI)− ̺∞(ω, σ)]dP (ω | xI) ,

and similarly for a seller II. An equilibrium of Γ∞ is defined as for Γn.

6Moreover, as an REE must necessarily solve the system of equations just described, φ∗ is the unique
REE of E∞.
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Define a strategy profile σ∗ = (σ∗
I , σ

∗
II) as follows. For i = I, II, and ω ∈ Ω, let

σ∗
i (s

∗(ω)) = φ∗(ω); for s < s∗(0), σ∗
i (s) = v(0, s); for s > s∗(1), σ∗

i (s) = v(1, s). It

is easily verified that σ∗ implements the REE.

For each grid size ζ > 0, we can define a limit game Γ∞,ζ with bids restricted to

{ 0, ζ, 2ζ, ... } as we did for Γn.

3.3. The Main Result. For each finite n, grid size ζ , a monotone pure strategy profile

σn,ζ = (σn,ζ
I , σn,ζ

II ), and xn ∈ Xn, let ̺n,ζ(ω, xn, σn,ζ) be the clearing price under σn,ζ; for

each trader t ∈ T n, let τn,ζt (ω, xn, σn,ζ) be the probability of getting the object, and let

τ̄n,ζ(ω, xn, σn,ζ) =
1

nm

∑

t∈Tn

τn,ζt (ω, xn, σn,ζ)1(xn
t > s∗(ω)).

We now state Reny and Perry [7]’s result in our framework.

Theorem 3.3. Fix ε > 0. For each sufficiently small ζ > 0, there exists n0(ζ) such that

for each n > n0(ζ), there is a monotone pure strategy equilibrium σn,ζ of Γn,ζ with the

following properties:

(a) ‖σn,ζ − σ∗‖ < ε;

(b) for each ω ∈ Ω, there exists a subset An of Xn such that P(An |ω) < ε and for

each xn ∈ Xn \ An:

(i) |̺n(ω, xn, σn,ζ)− φ∗(ω)| < ε;

(ii) |τ̄n,ζ(ω, xn, σn,ζ)− µ1| < ε.

Remark 3.4. If ζ is small, Properties (a) and (b) hold for all equilibria when n = ∞,

i.e., in the limit auction; as limits of monotone equilibria of Γn,ζ (as n goes to ∞) are

equilibria of Γ∞,ζ, Properties (a) and (b) can be easily shown to hold for any monotone

pure strategy equilibrium of Γn,ζ when ζ is small and n is large. The real task is to prove

existence of one such equilibrium.

Remark 3.5. One could strengthen Property (b) of the theorem by making An indepen-

dent of n, as follows. By viewing ̺n and τ̄n as functions defined on Ω×X∞, we can obtain,



10 P. BARELLI AND S. GOVINDAN

for each ω, a subset A∞ of X∞ with measure less than ε and such that items (i) and (ii) of

Property (b) hold outside A∞. Thus, one obtains an almost uniform convergence result.

4. Proof of Theorem 3.3

We proceed in steps. In Step 1, for each fixed grid size ζ , we construct a finite-

dimensional compact set Θζ parametrizing a set of monotone pure strategies that will be

used in our search for an equilibrium. It is anchored by the strategy profile σ∗ defined

above, so our search for an equilibrium is localized around σ∗. Θζ is defined in such a

way that the homotopy constructed in Step 4 has no zeros on the boundary of Θζ . In

Step 2, for i = I, II and all n, we construct a function π̄n,ζ,k
i , defined on Θζ ×Xi, which

we will use to identify equilibria of Γn,ζ, and use large deviations arguments to show that

π̄n,ζ,k
i and its derivative converge uniformly to π̄∞,ζ,k

i and its derivative (Lemma 4.1). In

Step 3, we use Lemma 4.1 and an appropriate approximation of π̄∞,ζ,k
i to verify that

π̄n,ζ,k
i = 0 indeed identifies an equilibrium of Γn,ζ. Step 4 is where we apply degree theory

to establish the desired lower semicontinuity result. We first associate each point in Θζ to

the corresponding image of the functions π̄n,ζ,k
i . For each n, that’s a mapping Υn,ζ between

finite-dimensional spaces. We show that, for n = ∞, the mapping has no zeros on the

boundary of Θζ and that the degree of its zero over Θζ is one. To show this, we construct

a homotopy deforming another such mapping Υ∗,ζ , whose unique zero must have degree

one, to the original Υ∞,ζ, and show that the homotopy has no zero on the boundary of

Θζ . This establishes that Υ∞,ζ has degree one. Lemma 4.1 then guarantees that Υn,ζ also

has degree one, and hence has a zero for n large enough. This establishes the existence of

equilibria of Γn,ζ. Step 5 concludes the proof by verifying that the constructed equilibria

are close to the equilibrium of Γ∞, and that the corresponding prices and allocations

converge to the REE price and allocation.

For each x = (xI, xII) ∈ [0, 1], define M∗(x) as follows: (0) M∗(x) = 0 if µ0P (xI | 0) +
µ1P (xII | 0) < µ0; (1) M

∗(x) = 1 if µ0P (xI | 1)+µ1P (xII | 1) > µ0; (2) otherwise, M
∗(x) is

the unique ω such that µ0P (xI |ω)+µ1P (xII |ω) = µ0. Let B = σ∗
I ([0, 1]) (or, equivalently,
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the range of σ∗
II). Let θ

∗
i : B → [0, 1] be the inverse of σ∗

i , for i = I, II. Let θ∗0 : B → Ω be

the function such that θ∗0(b) is the unique state ω such that v(ω, θ∗I (b)) = b.

To help navigate the arguments, we collected a list of the most important symbols used

below in the following table.

Symbol Meaning
αk Probability of trade at bid bk

B(ζ) Bid grid
bk k-th bid in the grid, that is, bk = kζ ; also referred to as simply k
k0 Bid in B(ζ) that is just below v(0, 0)
k∗
0 Bid in B(ζ) that is just below φ∗(0)

k1 Bid in B(ζ) that is just below v(1, 1)
k∗
1 Bid in B(ζ) that is just below φ∗(1)

O(ζ2) Big-O notation: bounded in absolute value by Kζ2, for some K > 0

π̄nζ,k
i (θ, xi) Payoff difference from bk and bk−1 at strategy induced by θ and signal xi

σ∗ The symmetric profile that implements that REE φ∗.
θi(k) Signal close to the signal xi with σ∗

i (xi) = bk−1

θi(k) Signal close to the signal xi with σ∗
i (xi) = bk

θ0(k) First coordinate of θ(k), that is, the state in the tuple (ω, xI, xII)(k)
Θζ Closed neighborhood of graph of σ∗ with corresponding clearing state ω
tk Length of the interval of states with clearing bid bk

t̄k Average tk under the linear approximations
t̂k tk in bid terms according to φ∗

w−(k) Average state where bk−1 clinches trade
w+(k) Average state where bk clinches trade
Υn,ζ(θ) Payoff differences at strategy induced by θ and signal θi(k)
Υ∗,ζ(θ) Difference between v at θ and certain values of b

Step 1. Fix now a grid size ζ . The set of admissible bids in the game Γn,ζ is { 0, ζ, 2ζ, . . . , }.
We use bk(ζ) to denote kζ , and when the ζ we are using is unambiguous, we simply write

bk. Let bk0 and bk1 be the highest bids in Γn,ζ that are weakly below v(0, 0) and v(1, 1),

respectively. Let B(ζ) = { (k0 + 1)ζ, . . . , (k1 + 1)ζ }. Let bk
∗

0 and bk
∗

1 be the highest bids

in B(ζ) that are weakly below φ∗(0) and φ∗(1), respectively.

Fix 0 < η < min{ bk0+1 − v(0, 0), bk1+1 − v(1, 1) }. For each i = I, II, let θi(k) be the

unique xi for which:
7

(1) σ∗
i (xi) = v(0, 0)) + ηζ if k = k0 + 1

7Uniqueness follows from strict monotonicity of σ∗.
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(2) σ∗
i (xi) = bk−1 + ζ/8 for k0 + 1 < k 6 k∗

1

(3) σ∗
i (xi) = bk−1 − ζ/12 if k∗

1 + 1 6 k 6 k1 + 1.

Likewise, let θi(k) be the unique xi for which:

(4) σ∗
i (xi) = bk + ζ/12 if k0 < k 6 k∗

0 + 1

(5) σ∗
i (xi) = bk − ζ/8 if k∗

0 + 1 < k < k1 + 1

(6) σ∗
i (xi) = bk − ηζ if k = k1 + 1.

Let Θζ be the closure of the set of all functions θ : B(ζ) → Ω× [0, 1]× [0, 1] such that

for each k, writing θ(k) as short for θ(bk), with θ(k) = (θ0(k), θ−0(k)):

(i) θi(k) ∈ (θi(k), θi(k)) for i = I, II and

(ii) θ0(k) = M∗(θ−0(k)).

In words, the k-th coordinate of an element of Θζ is a tuple (ω, xI, xII) such that ω is

the clearing state given (xI, xII) and b = bk, and (xI, xII) lie within the signals just to the

right of signals that would have bid bk−1 and just to left of signals that would have bid

bk, according to σ∗.8 The particular amounts of ζ/8, ζ/12, etc, of “just to the right/left”

are chosen so that a homotopy that we will define below avoids the boundary of Θζ . By

construction, Θζ is a compact 2|B(ζ)|-dimensional (topological) manifold with boundary

points consisting of θ where for some i, θi(k) is in { θi(k), θi(k) }.
Each function θζ ∈ Θζ induces a strategy profile σζ in the game Γn,ζ for all n, as follows.

For i = I, II, σζ
i (xi) = bk, where k is such that xi ∈ [θi(k), θi(k + 1)) for k0 6 k 6 k1 + 1,

with the convention that θi(k0) = 0 and θi(k1 + 2) = 1. The strategy profile is clearly

monotone and pure.

Step 2. We define a function π̄n,ζ,k
i : Θζ ×Xi → R for each n (including n = ∞), ζ and

bk ∈ B(ζ) as follows. Fix θ ∈ Θζ and let σ be the strategy profile induced by θ. For each

i, k0 + 1 6 k 6 k1 + 1, xi, and n 6= ∞, define

π̄n,ζ,k
i (θ, xi) =

1
∫

Ω
[τni (b

k, ω, σ)− τni (b
k−1, ω, σ)] p(ω | xi)dω

[

πn
i (b

k, σ; xi)− πn
i (b

k−1, σ; xi)
]

8With modified constructions for “boundary” k’s, with (xI, xII) switching from “just to left (right)” to
“just to the right (left)”, as is clear from points (1), (3), and (4) above.
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which is the expected payoff difference between bidding bk and bk−1 for type xi normalized

by the difference in probabilities of clinching trade by switching from bk−1 to bk. For

n = ∞, we can use the same formula if with positive probability either bk−1 or bk is a

clearing price under σ. Otherwise, either bk is below the clearing price at state ω = 0 and

we let this difference be v(0, xi) − bk; or bk−1 is above the clearing price at state ω = 1

and we let this formula be v(1, xi)− bk−1.

The following lemma, whose proof can be found in the Appendix, gives a continuity

property for the payoff differences π̄n,ζ,k
i (θ, xi).

Lemma 4.1. For each k, π̄n,ζ,k
i (θ, yi) converges to π̄∞,ζ,k

i (θ, yi) uniformly in (θ, yi) ∈
Θζ ×Xi; and the same is true of its derivative w.r.t. yi.

Step 3. We now compute a good approximation for π̄∞,ζ,k
i when either bk or bk−1 is the

clearing price for a non-null set of states. The error term in our approximation is denoted

O(ζ2), where O(h) is bounded in absolute value by Kh for some K > 0 that is a function

of the data of the model, i.e., the game Γ.

Let tk = θ0(k + 1)− θ0(k), t
k−1 = θ0(k)− θ0(k − 1) denote the lengths of the intervals

of states where the market clearing bids are bk and bk−1, respectively.

Let αk be equal to τ∞i (bk, θ0(k + 1), σ) if i = I and to 1− τ∞i (bk, θ0(k + 1), σ) if i = II.

Let αk−1 be equal to 1− τ∞i (bk−1, θ0(k − 1), σ) if i = I and to τ∞i (bk−1, θ0(k − 1), σ) if

i = II.

Either tk or tk−1 will be positive by assumption (and then in O(ζ)). Also αk is zero if

θ0(k+1) < 1 and αk−1 is zero if θ0(k−1) > 0, so that one of these two variables will be zero

for small ζ . We can approximate τ∞I (bk, ω, σ) (resp. 1− τ∞II (b
k, ω, σ)) on [θ0(k), θ0(k+1)]

by a linear function that is 1 at θ0(k) and αk at θ0(k + 1), and 1 − τ∞I (bk−1, ω, σ) (resp.

τ∞II (b
k−1, ω, σ)) on [θ0(k − 1), θ0(k)] by a linear function that is 1− αk−1 at θ0(k − 1) and

0 at θ0(k). Also, using

v(θ0(k) + s, xi) = v(θ0(k), xi) +
∂v(θ0(k), xi)

∂ω
s+O(s2)
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and

p(θ0(k) + s | xi) = p(θ0(k) | xi) +
∂p(θ0(k) | xi)

∂ω
s+O(s2),

we can write

π̄∞,ζ,k
i (θ, xi) = [v(w−(k), xi)− bk−1]t̄k−1 + [v(w+(k), xi)− bk]t̄k +O(ζ2)

where

w−(k) = θ0(k)−
tk−1(1 + 2αk−1)

3 + 3αk−1

if ∂v(θ0(k),xi)
∂ω

> 0, and w−(k) = θ0(k) otherwise;

t̄k−1 =
tk−1(1 + αk−1)

tk(1 + αk) + tk−1(1 + αk−1)
;

w+(k) = θ0(k) +
tk(1 + 2αk)

3 + 3αk

if ∂v(θ0(k),xi)
∂ω

> 0, and w+(k) = θ0(k) otherwise; and

t̄k =
tk(1 + αk)

tk(1 + αk) + tk−1(1 + αk−1)
.

Since the integrals involved in the computations above using ω can also be performed by

a change of variable using b, we have:

t̄k−1 =
t̂k−1(1 + αk−1)

t̂k(1 + αk) + t̂k−1(1 + αk−1)
+O(ζ),

where t̂k−1 = φ∗(θ0(k))− φ∗(θ0(k − 1)) and t̂k = φ∗(θ0(k + 1))− φ∗(θ0(k)), and similarly

for t̄k. For the same reason,

v(w+(k), xi) < v(θ0(k), xi) +
t̂k(1 + 2αk−1)

3 + 3αk−1

and

v(w−(k), xi) > v(θ0(k), xi)−
t̂k−1(1 + 2αk−1)

3 + 3αk−1
.

Finally, given θ, if either bk or bk−1 is a clearing price, then for x with xI = xII,

since ∂v(θ0(k),xi)
∂ω

is independent of i, we have that π̄∞,ζ,k
i (θ, xi) − π̄∞,ζ,k

j (θ, xj) ∈ O(ζ2)



MONOTONE EQUILIBRIA IN DOUBLE AUCTIONS 15

so if (θ∗i )
−1(θi(k)) − (θ∗j )

−1(θj(k)) is negative but not in O(ζ2), then π̄∞,ζ,k
i (θ, θi(k)) −

π̄∞,ζ,k
j (θ, θj(k)) < 0.

Lemma 4.2. For all sufficiently small ζ , there exists N(ζ) with the following property.

For n > N(ζ) if there is θ in Θζ such that π̄n,ζ,k
i (θ, θi(b

k)) = 0 for each k and i, then the

corresponding strategy profile σζ = (σζ
I
, σζ

II
) is an equilibrium of Γn,ζ.

Proof. The result follows if we establish a single-crossing property for the payoffs (c.f.

Athey [1]) i.e. if we show the existence of δ > 0 such that
∂π̄

n,ζ,k
i (θ,xi)

∂xi
> δ for all θ ∈ Θζ ,

i = I, II, xi ∈ Xi and k, if n is large. In light of Lemma 4.1, it is sufficient to get this

bound when n = ∞. If neither bk−1 or bk is a clearing price, then the derivative of π̄∞,ζ,k
i

is the derivative of the value, which is strictly positive by assumption. Otherwise, using

the approximation of π̄∞,ζ,k
i above, the derivative of π̄∞,ζ,k

i is strictly positive with a lower

bound that is independent of θ (and indeed also of ζ when it is sufficiently small) and the

conclusion follows. �

Step 4. The previous lemmas combine to give the following penultimate step in the proof

of Theorem 3.3.

Lemma 4.3. For each sufficiently small ζ > 0, there exists N(ζ) such that for each n >

N(ζ), there exists θn,ζ ∈ Θζ such that the induced strategy profile σn,ζ is an equilibrium

of the game Γn,ζ.

Proof. Fix ζ . For each n, define a map Υn,ζ : Θζ → R
{I,II}×B(ζ) by:

Υn,ζ
i,k (θ) = π̄n,ζ,k

i (θ, θi(k)).

for each i = I, II and bk ∈ B(ζ). We will now show that for all small ζ , Υ∞,ζ has no zeros

on the boundary of Θζ and that the degree of zero over Θζ is one. The result then follows.

Indeed, by Lemma 4.1, Υn,ζ has a zero θn,ζ ∈ Θζ for large n; and Lemma 4.2 shows that

θn,ζ induces an equilibrium of Γn,ζ.
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To prove that the degree of zero over Θζ under the map Υ∞,ζ is one, we proceed as

follows. Define Υ∗,ζ : Θζ → R
{I,II}×B(ζ) by:

Υ∗,ζ
i,k (θ) =















v(θ0(k), θi(k))− bk if k 6 k∗
0 + 1

v(θ0(k), θi(k))− .5bk−1 − .5bk if k0 + 1 < k < k∗
1 + 1

v(θ0(k), θi(k))− bk−1 o.w.

Obviously Υ∗,ζ has a unique zero. Moreover, by Assumption 3.2, this map is a homeo-

morphism onto its image and hence has degree one. To obtain our result, we show that

for each λ ∈ [0, 1), λΥ∗,ζ + (1 − λ)Υ∞,ζ has no zero on the boundary of Θζ.9 Take θ in

the boundary of Θζ. Let ϑ∗,ζ and ϑ∞,ζ be its image under Υ∗,ζ and Υ∞,ζ respectively; we

will show that λϑ∞,ζ + (1− λ)ϑ∗,ζ 6= 0 for all λ ∈ [0, 1).

Since θ ∈ ∂Θζ , there exists some k such that θi(k) ∈ { θi(k), θi(k) } for some i = I, II.

Suppose θi(k) = θi(k). (The case where θi(k) = θi(k) is similar and therefore omitted.)10

ϑ∗,ζ
i,k is negative and, therefore, it suffices to show that ϑ∞,ζ

i,k is negative as well. Suppose

that neither bk−1 nor bk is a clearing price. Then, θ0(k) is either 0 or 1; in both cases,

ϑ∞,ζ
i,k = ϑ∗,ζ

i,k < 0. If either bk−1 or bk is a clearing price then |(θ∗i )−1(θi(k))− (θ∗j )
−1(θj(k))|

is in O(ζ2), as otherwise both Υ∞,ζ
i,k (θ)−Υ∞,ζ

j,k (θ) and Υ∗,ζ
i,k (θ)−Υ∗,ζ

j,k(θ) are strictly negative.

Therefore,

v(θ0(k), θi(k)) = bk−1 +
ζ

8
+O(ζ2)

if k < k∗
1 + 1 and

v(θ0(k), θi(k)) < bk−1

otherwise. It follows that, if k = k∗
1 + 1, k∗

1 + 2, then θi(k) gets a negative payoff from

both ties at bk−1 and bk, and thus ϑ∞,ζ
i,k is negative. If k = k∗

0 and bk is a clearing price,

then

v(w+(k), θi(k)) < v(θ0(k), θi(k)) +
t̂k

3
,

9For λ = 1, the homotopy is equal to Υ∗,ζ, which by construction is not equal to zero on the boundary
of Θζ.
10The arguments for k∗1 + 1 are similar to those below for k∗0 , and the arguments for k∗0 and k∗0 − 1 are
similar to those below for k∗1 + 1 and k∗2 + 2.
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where t̂k = φ∗(θ0(k + 1))− φ∗(θ0(k)). Since θ0(k) = 0, we have

v(θ0(k), θi(k)) = bk−1 +
ζ

8
.

As φ∗(θ0(k)) = φ∗(0) > bk and φ∗(θ0(k + 1)) 6 bk+1 + ζ/12, t̂k is no more than 13ζ/12.

Therefore,

v(w+(k), θi(k)) 6 bk−1 +
35ζ

72

and thus

ϑ∞,ζ
i,k 6 −37ζ

72
+O(ζ2).

Finally, for all other k’s, similar computations give us

v(w+(k), θi(k))− bk < −7ζ

24
+O(ζ2)

and

v(w−(k), θi(k))− bk−1 6
ζ

8
+O(ζ2).

Also

t̄k

t̄k−1
=

t̂k

t̂k−1
+O(ζ2) > 1 +O(ζ2),

Therefore,

ϑ∞,ζ
i,k 6 − ζ

12
+O(ζ2),

which completes the proof. �

Step 5. We are now ready to wrap up the proof of Theorem 3.3. Fix ε > 0. Choose

ζ0 < ε/2 such that 7pζ0‖θ∗‖1 < ε, where p = maxxt,ω p(xt |ω) and ‖ · ‖1 is the C1-norm

restricted to the interval (φ∗(0), φ∗(1)), and that is sufficiently small in the sense of both

Lemma 4.2 and Lemma 4.3. Fix 0 < ζ 6 ζ0. Choose n0 such that for each n > n0, Lemmas

4.2 and 4.3 apply, and max{ ‖σ∗‖2
1

4n0mζ2p2
,

‖θ∗‖−2

1

4n0mζ2p2
} 6 ε

3
, where p = minxt,ω p(xt |ω) > 0. Now

fix n > n0. By Lemmas 4.2 and 4.3, there exists θn,ζ ∈ Θζ that induces a strategy profile

σn,ζ that is an equilibrium of Γn,ζ. For i = I, II and xi ∈ [0, 1], σn,ζ
i (xi) ∈ [bk−1, bk) ± ζ

where k is the unique integer such that xi ∈ (θ∗i (b
k−1), θ∗i (b

k)]. Therefore, Property (1) of

Theorem 3.3 is satisfied.
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As for Property (2), fix ω ∈ Ω. Let An
ε be the set of xn ∈ Xn such that:

(a) 1
mn

∑

t∈Tn 1(σ∗(xn
t )− φ∗(ω) > ζ) > µ1; or

(b) 1
mn

∑

t∈Tn 1(φ∗(ω)− σ∗(xn
t ) > ζ) > µ0; or

(c) 1
mn

∑

t∈Tn 1(|φ∗(ω)− σ∗(xn
t )| 6 3ζ) > 7pζ‖θ∗‖1.

Chebyshev’s inequality gives a bound of the probability of each of the three events to be

less than ε/3 by our choice of n0 and ζ . Indeed, for (a) consider mn trials of a binomial

where the probability of success is 1 − P (θ∗i (ζ + φ∗(ω)) |ω), and hence bounded from

above by µ1 − pζ‖σ∗‖−1
1 . By Chebyshev’s inequality, the probability of the event (a) is

bounded by
‖σ∗‖2

1

4nmζ2p2
. The other two cases are similar. For xn not in An

ε : the clearing price

is one of the prices in the grid that are in the interval φ∗(ω)± ζ , which proves 2(a); the

misallocation under σn,ζ is only for signals xi whose bid under σ∗ is within ζ of φ∗(ω) and

the fraction of such signals is at most 2ζ , which proves 2(b).

Appendix

This appendix first lays out a few key computations concerning asymptotic probabilities,

both in the case where the Central Limit Theorem applies as well as in the case of large

deviations. The asymptotics in the text derive from getting n draws from a (2-fold) sum

of trinomial or binomial variables. These results are then used to prove Lemma 4.1. See

Gray [5] for related material.

Trinomial Probabilities. For each i = I, II, a pair of signals 0 6 x1
i < x2

i 6 1 with

x2
i − x1

i < 1 generates a trinomial distribution with outcomes 0, 1, and 2, with their

respective probabilities being P (x1
i |ω), P ([x1

i , x
2
i ] |ω), and 1 − P (x2

i |ω). For each n,

and a triple of integers ki = (ki,0, ki,1, ki,2) that sum to n, let P (ω, x1, x2, ki, n) be the

probability that in n trials, exactly ki,0 draws are below x1
i , and exactly ki,2 draws are

above x2
i . Letting κi = n−1ki, we have:

P (ω, x1
i , x

2
i , ki, n) =

(

n!

ki,0!ki,1!ki,2!

)

exp(−nD(ω, x1
i , x

2
i , κi)) exp(−nH(κi)),
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where H(·) is the entropy of the trinomial distribution κi = (κi,0, κi,1, κi,2) and D(·) is

its relative entropy w.r.t. to the given trinomial.11 When x1
i = 0 or x2

i = 1, we have a

binomial distribution which we view as a special case of the trinomial just defined, with

the convention that 0! = 1 and 0 ln 0 = 0.

Relative-Entropy Minimization. Let K be the set of κ ∈ [0, 1]6 such that: for each

i,
∑2

l=0 κi,l = 1, with κi,l = 0 if l is not in the support of the trinomial given by (x1
i , x

2
i );

∑

i κi,0 < µ0; and
∑

i κi,2 < µ1. Let K̄ be its closure. For each κ, let D(ω, x1, x2, κ) =
∑

i D(ω, x1
i , x

2
i , κi) and consider the minimization problem:

min
κ∈K̄

D(ω, x1, x2, κ).

Let D∗(ω, x1, x2) be the optimal value and κ∗(ω, x1, x2) the minimizer. The norm of

the gradient d∗(ω, x1, x2) at the optimal solution is non-negative and finite. Denote by

Ω(x1, x2) the set of ω such that P (x |ω) = µ0 for some x ∈ [x1, x2]. Ω(x1, x2) is then

an interval. If Ω(x1, x2) is a singleton, then it is either the state ω = 0 or ω = 1. If

Ω(x1, x2) is an interval, then for each ω ∈ Ω(x1, x2), in the optimal solution κ∗(ω, x1, x2),

the i-th coordinates, for each i, are the trinomial probabilities of the distribution derived

from (x1
i , x

2
i ) and the optimal relative entropy is zero. Outside this interval of states,

the relative entropy D∗(·, x1, x2) is strictly increasing in the distance from Ω(x1, x2) and

convex. If Ω(x1, x2) is empty then D∗(·, x1, x2) is minimized at either ω = 0 or ω = 1

depending on whether P (x1
i | 1) < µ0 or (1 − P (x2 | 0)) > µ1 and then D∗(·, x1, x2) is C2

and accordingly either strictly increasing or decreasing.

Expected Probability of Winning in a Tie at a Bid. Take pairs 0 6 x1
i 6 x2

i 6 1

for each i as in the previous subsection. Suppose types in [x1
i , x

2
i ] bid b, types above (resp.

below) x2
i (resp. x1

i ) bid above b (resp. below b) in the game Γn. A tie at bid b in state

ω occurs if the total number of traders with signals above x2 is strictly less than mIIn

and those with signals less than x1 is strictly less than mIn. Thus, it occurs when the

11The entropy of a discrete random variable with probability mass p(x) is −
∑

x∈x p(x) ln(p(x)); relative

to another random variable with probability mass q(x), the entropy is −∑

x∈X p(x) ln(p(x)
q(x) .
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empirical frequency of the trinomial draws falls in K. The probability Gn(ω, x1, x2) of a

tie (at bid b) in state ω is computed as:

Gn(ω, x1, x2) ≡
∑

κ∈Kn

∏

i

P (ω, x1, x2, κi)

where Kn is the subset of K consisting of κ such that nκ is a vector of integers. As we

only have to move at most n−1 in each coordinate in K to be in Kn, and K is convex, the

usual inequalities from the method of types employed in proving Sanov’s Theorem give

the following bounds:

1

(n + 1)6
exp(−

√
6d∗(ω, x1, x2) +O(n−2)) 6

Gn(ω, x1, x2)

exp(−nD∗(ω, x1, x2))
6 1,

where d∗(ω, x1, x2) is the norm of the gradient of D(ω, x1, x2) at the entropy minimizer.

Moreover, suppose (x1,n, x2,n) → (x1, x2). If ω is in the interior of Ω(x1, x2), then by the

Uniform Law of Large Numbers, limnG
n(ω, x1,nx2,n) = 1. If ω falls outside this interval,

then we get limn n
−1 ln(Gn(ω, x1,n, x2,n)) = −D∗(ω, x1, x2) by Sanov’s Theorem. For a

boundary point ω of the set Ω(x1, x2), the limit probability falls somewhere in [0, 1].

When there is a tie, the probability of winning is determined by the number of agents

involved in the tie and is thus a random variable defined as follows. Let τ̄∞ : K̄ → [0, 1]

be given by:

τ̄∞(κ) =
m1 − κ̄2

κ̄1

where κ̄l =
∑

i κi,l for l = 1, 2. Then, the expected probability of winning a tie in state ω

is:

τ̄n(ω, x1, x2) =
∑

κ∈Kn

∏

i

P (ω, x1, x2, κi)τ̄
∞(κ).

Also, let

τ̂n(ω, x1, x2) =
∑

κ∈Kn

∏

i

P (ω, x1, x2, κi)(1− τ̄∞(κ)).
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As τ̄∞(κ) is at least 1
2n

and, of course, no more than 1
2
, we have the following bounds

for this probability:

1

2n
Gn(ω, x1, x2) 6 τ̄n(ω, x1, x2) 6

1

2
Gn(ω, x1, x2),

and similarly,

1

2
Gn(ω, x1, x2) 6 τ̂n(ω, x1, x2) 6

2n− 1

2n
Gn(ω, x1, x2),

Suppose (x1,n, x2,n) → (x1, x2). If ω is in the interior of Ω(x1, x2), then by the Uniform

Law of Large Numbers we have limn τ̄
n(ω, x1,n, x2,n) = τ̄∞(κ∗(ω, x1, x2)).

Finally, let K̃n be the subset of K̄ consisting of κ such that nκ is a vector of in-

tegers,
∑

i κi,0 = m0, and
∑

i κi,2 = m1. Using K̃n in the place of Kn we compute

G̃n(ω, x1, x2), the probability of the event that the number of players with signals less

than x1 is equal to m0n and that the number of players with signals above x2 is equal

to m1n. As above, G̃
n is driven by the minimum relative entropy D̃∗(ω, x1, x2). Observe

that D̃∗(ω, x1, x2) > D∗(ω, x1, x2), and hence that G̃n(ω,x1,x2)
Gn(ω,x1,x2)

→ 0 exponentially in n and

uniformly in (ω, x1, x2).

For the first-order difference equations for a player type i, we need to compute the

probability Gn
i (ω, x

1, x2) of a tie at a bid b if one trader t of type i were to submit it,

as well as the corresponding expected probabilities τ̄ni (ω, x
1, x2) and τ̂ni (ω, x

1, x2). The

probabilities are obtainable by a small modification of the above computations. Fix i.

We get n trinomial trials for j 6= i and n− 1 for i. Let Kn
i be the set of κ ∈ K such that:

(a) for j 6= i, nκj is a vector of integers; (b) (n− 1)κi is a vector of integers;
∑

j 6=i nκj,0 +

(n− 1)κi,0 6 mIn− 1,
∑

j 6=i nκj,2 + (n− 1)κi,2 6 mIIn− 1,
∑

j 6=i nκj,1 + (n− 1)κi,1 > 1.

Replace Kn with Kn
i to get the probability Gn

i (ω, x
1, x2) of a tie involving i at bid b and

also τ̄∞i , with the denominator being κ̄1 + n−1 (to include i). One way to leverage the

previous computations is to take n−1 trials for all j (including i) and then have an extra

trial for players (j, 1), j 6= i. Thus, we get the bound below for Gn
i (ω, x

1, x2):

1

n6
exp(−

√
6d∗(ω, x1, x2) +O(n−2)) 6

Gn
i (ω, x

1, x2)

exp(−(n− 1)D∗(ω, x1, x2))
6 1,
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and τ̄ni (ω, x
2, x1) is derived as before, using now Gn

i (ω, x
1, x2) instead of Gn(ω, x1, x2). We

can similarly compute the probability G̃n
i (ω, x

1, x2) that i is the only player with a signal

in [x1, x2].

Proof of Lemma 4.1. As Θζ ×Xi is compact and π̄n,ζ
i,k is continuous in (θ, yi) for all n

(including n = ∞), the result is proved if we show that for a sequence (θn, yni ) → (θ, yi),

we have π̄n,ζ,k
i (θn, yni ) → π̄∞,ζ

i (θ, yi, k) and similarly for the derivatives.

Let (x0,n, x1,n, x2,n) = (θn−0(k − 1), θn−0(k), θ
n
−0(k + 1)) for each n and let (x0, x1, x2) be

its limit. Let yni → yi.

For each n, and for the case of a buyer, we decompose π̄n,ζ,k
i (θn, yni ) as

λ0,n

∫

Ω

(vi(ω, y
n
i )− bk−1)q0,n(ω)dω + λ1,n

∫

Ω

(vi(ω, y
n
i )− bk)q1,n(ω)dω − (1− λ0,n − λ1,n)αζ

(for a seller we have −(1− α)ζ in the place of αζ),

q0,n(ω) =
τ̂ni (ω, x

0,n, x1,n)p(ω | yni )
∫

Ω
τ̂ni (ω

′, x0,n, x1,n)p(ω′ | yni )dω′
;

q1,n is defined similarly using (x1,n, x2,n) and also replacing τ̂ni with τ̄ni ; and

λℓ,n =

∫

Ω
qℓ,n(ω)dω

∫

Ω
[q0,n(ω) + q1,n(ω) + G̃n

i (ω, x
0,n, x1,n)]dω

, ℓ = 0, 1.

Suppose Ω(x1, x2) has a nonempty interior. Then, q1,n converges pointwise to the density

q1 given by: q1(ω) = τ̄∞(κ∗(ω, x1, x2))p(ω | yi) if ω belongs to the interior of Ω(x1, x2) and

is zero if it does not belong to Ω(x1, x2). Hence, the expectation under q1,n corresponds

to the payoff from a tie at bid bk for types in [x1, x2]. If Ω(x1, x2) has an empty interior,

then D∗(ω, x1, x2) is the lowest at either ω = 0 or ω = 1. Assume the former. Then, for

each ω < ω′,

lim
n→∞

q1,n(ω′)

q1,n(ω)
= lim

n→∞
exp[−n(D∗(ω′, x1,n, x2,n)−D∗(ω, x1,n, x2,n))] = 0.

and we have that the limit of the probability measures Q1,n is point mass at ω = 0. Hence

the expectation converges to vi(0, yi)− b, which is what we impute under π̄∞,ζ
i . A similar

computation holds for q0,n. To finish the proof, we need to get the convergences of λℓ,n.
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Observe first that because G̃n
i (ω, x

0, x1) is dominated by Gn
i (ω, x

0, x1), λ0,n + λ1,n → 1.

If both Ω(x0, x1) and Ω(x1, x2) have nonempty interiors, then the limit of λ0,n exists and

is in (0, 1) as q0,n and q1,n converge pointwise; if Ω(x0, x1) has an empty interior but

D∗(ω, x0, x1) is lowest at ω = 0, then

lim
n

λ0,n = lim
n

exp(−n(D∗(0, x0,n, x1,n)−D∗(0, x1,n, x2,n)) = 0.

All other cases are handled similarly and we get the appropriate convergence.

The logic for the functions involving the derivatives is similar and, therefore, omitted.
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