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Abstract

In the allocation of indivisible objects under weak priorities, a common prac-

tice is to break the ties using a lottery and randomize over deterministic mecha-

nisms. Such randomizations usually lead to unfairness and inefficiency ex-ante.

We propose and study the concept of ex-ante fairness for random allocations, ex-

tending some key results in the one-sided and two-sided matching markets. It is

shown that the set of ex-ante fair random allocations forms a complete and distribu-

tive lattice under first-order stochastic dominance relations, and the agent-optimal

ex-ante fair mechanism includes both the deferred acceptance algorithm and the

probabilistic serial mechanism as special cases. Instead of randomizing over deter-

ministic mechanisms, our mechanism is constructed using the division method, a

new general way of constructing random mechanisms from deterministic mecha-

nisms. As additional applications, we demonstrate that several previous extensions

of the probabilistic serial mechanism have their foundations in existing determin-

istic mechanisms.
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1 Introduction

We study "priority-augmented" allocation of indivisible objects without monetary trans-

fers: while agents have ordinal preferences over heterogeneous objects, each object also

has its own priority ranking over the agents. School choice (Abdulkadiroğlu and Sönmez,

2003) is one of the most popular applications in practice. The nature of such allocation

is closely related to the classical two-sided matching (Gale and Shapley, 1962), and in

our context stability is regarded as a key fairness consideration, which requires the dif-

ferences in priorities be respected. In the case of strict preferences and strict priorities,

the deferred acceptance algorithm (DA) from Gale and Shapley (1962) is often consid-

ered as the best mechanism, since it is agent-optimal stable and strategy-proof. In this

study, we consider the more general case with weak priorities, where the appropriate

axioms to be imposed and the optimal choice of mechanism are much less obvious. Ties

in priorities are commonly observed in practice.1 Moreover, this framework includes the

classical house allocation problem (Hylland and Zeckhauser, 1979) as a special case, by

treating all the agents as equally ranked by every object.

In the presence of ties in priorities, the additional fairness consideration regarding

agents with equal priority requires the use of random allocations. The most common

way of constructing a random mechanism, both in theory and in practice, is to random-

ize over deterministic mechanisms. In particular, we can first break the ties in priorities

using a randomly selected ordering of agents, then apply a deterministic mechanism.

Some familiar examples include random serial dictatorship in house allocation (Ab-

dulkadiroğlu and Sönmez, 1998), top trading cycles mechanism with random ordering

in house allocation with existing tenants (Abdulkadiroğlu and Sönmez, 1999, Sönmez

and Ünver, 2005), and DA with random tie-breaking in school choice (Abdulkadiroğlu

and Sönmez, 2003). It is well-known that random mechanisms constructed in this way

can preserve the strategy-proofness of the deterministic mechanisms, but the outcomes

usually suffer from inefficiency and unfairness from the ex-ante perspective.

1For instance, in a school choice program students are often prioritized based on only a few criteria
(e.g., the walk zone and sibling criteria), and hence many students may have the same priority at a school.
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In light of this issue, two notable studies design new random mechanisms that as-

sign probability shares of objects to agents directly. In house allocation, Bogomolnaia

and Moulin (2001) introduce the probabilistic serial mechanism (PS) that achieves (first-

order) stochastic-dominance efficiency and stochastic-dominance envy-freeness. PS de-

termines a random allocation through an "eating" or consumption process, where the

agents simultaneously consume their best available objects at the unit rate during the

unit time interval. In the general case with weak priorities, Kesten and Ünver (2015)

propose a fairness concept from the ex-ante perspective, strong ex-ante stability, and

construct the fractional deferred acceptance mechanism, which is agent-optimal strongly

ex-ante stable.

We take a similar approach as Kesten and Ünver (2015), and first propose a new and

normatively appealing fairness concept, ex-ante fairness, that is generally not satisfied

by existing mechanisms (Section 3). It is defined as the combination of two separate

axioms: ex-ante stability and ordinal fairness. Ex-ante stability is studied in Roth et al.

(1993) in the context of two-sided matching, and introduced to priority-augmented

allocation by Kesten and Ünver (2015). It requires that if agent i is ranked higher

than agent j by object a, then j cannot receive a with a positive probability unless i

receives an object weakly better than a with probability one. On the other hand, ordinal

fairness requires that if i and j are ranked equally by a, and i has a positive probability

of receiving it, then her probability of receiving an object weakly better than a cannot

be larger than j’s probability of receiving an object weakly better than a. This is an

adaption of the original ordinal fairness concept defined by Hashimoto et al. (2014) in

house allocation, where they use it as a key axiom to characterize PS, and conforms

to the idea of compensation, a general principle of fairness and social justice (Moulin,

2004).

We then introduce the deferred consumption mechanism (DC) to show that an ex-

ante fair random allocation always exists (Section 4). DC naturally combines features

of DA and PS. In each step, agents propose to consume objects during certain time in-

tervals, and objects tentatively accept some (portions of) proposals based on differences

in priorities, as well as the principle of first-come first-serve for equally ranked agents.

If an agent’s proposal to consume some object during a time interval [x , y] is rejected,

then she proposes to consume her next best option during [x , y] in the next step. This

propose-and-reject procedure may not be finite, but we show the sequence of tenta-

tive assignments converges to the agent-optimal ex-ante fair random allocation, i.e., the
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unique ex-ante fair random allocation that stochastically dominates every other ex-ante

fair random allocation for all agents. DC is reduced to DA in the special case of strict

priorities, and to PS in the special case of house allocation.

We explore the structural properties of ex-ante fair random allocations further (Sec-

tion 5). Most notably, the set of ex-ante fair random allocations is a complete and

distributive lattice under the stochastic dominance relations of the agents, which ex-

tends Conway’s lattice theorem of stable matchings (Knuth, 1976). We also establish a

generalized and probabilistic version of the rural hospital theorem (McVitie and Wilson,

1970, Roth, 1984, 1986). In some cases, objects are not entirely passive and they have

intrinsic preferences that are aligned with their priorities. In this context, agents and

objects have opposite interests over ex-ante fair random allocations, and each ex-ante

fair random allocation is stochastic-dominance efficient for the two sides of the market.

To better understand our results, we next introduce a new general method of con-

structing random mechanisms from deterministic mechanisms (Section 6). This method

is referred to as division, and the basic idea is as follows. Given a positive integer q, we

divide (the claim of) each agent into q parts, and each object into q parts as well. Then

the (finitely) divided problem consists of these agent parts and object parts, where prefer-

ences and priorities are extended from the original problem. A deterministic allocation

for the divided problem generates a random allocation for the original problem: an

agent’s probability of being assigned an object is the proportion of her parts that are as-

signed the object’s parts. In general, random allocations generated in this way can have

better efficiency and fairness properties from the ex-ante perspective, compared to the

usual randomization method. Although the interpretation is different, the idea of the

division method in the special case of house allocation first appears in Kesten (2009).

We discuss his results in details in Section 7.1.

The finite division framework will be formally used in later applications. To give

an alternative perspective on ex-ante fairness, we need to envision a continuum divided

problem, where each agent and object is divided into a continuum of parts with measure

one. Then, every ex-ante fair random allocation is generated by a stable deterministic

allocation in the continuum divided problem. This connection with stability helps ex-

plain some of the key structural results on ex-ante fairness. Moreover, DC is essentially

generated by applying DA to continuum divided problems. While DA is strategy-proof,

DC is not, and in general ex-ante fairness is not compatible with strategy-proofness.

Compared to the randomization method, one drawback of the division method is that
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it does not preserve the incentive compatibility of a deterministic mechanism.

In the end, we present additional applications of division (Section 7). In partic-

ular, several previous generalizations of PS can be obtained by applying well-known

deterministic mechanisms to finitely divided problems. In house allocation under weak

preferences, the extended PS solution by Katta and Sethuraman (2006) can be obtained

from the serial dictatorships defined for weak preferences by Svensson (1994). In allo-

cation with private endowments, the generalized PS by Yılmaz (2010) can be obtained

from a variation of serial dictatorships that preserves stability,2 and the generalized PS

by Zhang (2017) can be obtained from the top trading cycles mechanism (Abdulkadiroğlu

and Sönmez, 2003). Then, for house allocation with multi-unit demands, the two gen-

eralizations of PS by Kojima (2009) and Heo (2014) can be obtained from two differ-

ent classes of serial dictatorships under multi-unit demands (Pápai, 2000, Bogolmonaia

et al., 2014), respectively. Finally, in the general case with weak priorities, motivated by

Harless (2018), we construct a new probabilistic version of Boston mechanism using the

division method, which restores some key desirable features of the deterministic Boston

mechanism under strict priorities.

We discuss closely related studies in details in Section 8, and conclude in Section 9.

All the proofs are given in Appendix A.

2 Preliminaries

Let N be a non-empty and finite set of agents and A a non-empty and finite set of

objects. Each agent i ∈ N has a complete and transitive preference relation Ri on

A∪{i}, with Pi and Ii denoting its asymmetric and symmetric components, respectively.

We mainly focus on strict preferences, and assume that Ri is antisymmetric except in the

discussions of the division method introduced in Section 6 and an application in Section

7.1. A preference profile R = (Ri)i∈N is a list of individual preferences. On the other

hand, each object a ∈ A has a complete and transitive priority ordering ≽a on N , with

≻a and∼a denoting its asymmetric and symmetric components, respectively. A priority

structure ≽= (≽a)a∈A is a profile of priority orderings. Then, a priority-augmented

2Yılmaz (2009) considers allocation problems with private endowments and weak preferences, and
proposes a new solution that extends the mechanisms in Yılmaz (2010) and Katta and Sethuraman
(2006). This solution is further extended by Athanassoglou and Sethuraman (2011) to allocation prob-
lems with fractional endowments.
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allocation problem, or simply a problem, is summarized as p = (N , A, R,≽).3
For a given problem p = (N , A, R,≽), a random allocation, or simply an allocation,

is denoted by a |N |× |A| matrix M such that Mia ≥ 0,
󰁓

b∈A Mi b ≤ 1, and
󰁓

j∈N M ja ≤ 1

for all i ∈ N and a ∈ A, where Mia represents the probability that agent i is assigned

object a. For each i ∈ N , let Mi = (Mia)a∈A∪{i} denote the lottery obtained by i under

the allocation M , where Mii = 1−
󰁓

a∈A Mia is the probability that i receives her outside

option. Similarly, for each a ∈ A, let Ma = (Mia)i∈N∪{a}, where Maa = 1 −
󰁓

i∈N Mia is

the probability that a is unassigned. M is a deterministic allocation if Mia ∈ {0, 1}
for all i ∈ N and a ∈ A. For ease of exposition, we also use a one-to-one function

µ : N → A∪ N , where µ(i) ∈ A∪ {i} for all i ∈ N , to denote a deterministic allocation.

By an extension of the Birkhoff-von Neumann theorem (Birkhoff, 1946, von Neumann,

1953, Kojima and Manea, 2010), every random allocation can be represented as a lottery

over deterministic allocations.

For i ∈ N and a ∈ A∪ {i}, let F(Ri, a, M) =
󰁓

b∈A∪{i}:bRi a
Mi b denote the probability

that agent i is assigned an option weakly better than a under the allocation M . Then

let F(Pi, a, M) =
󰁓

b∈A∪{i}:bPi a
Mi b. Similarly, for a ∈ A and i ∈ N , let F(≽a, i, M) =󰁓

j∈N : j≽a i M ja and F(≻a, i, M) =
󰁓

j∈N : j≻a i M ja. An allocation M is individually rational

if F(Ri, i, M) = 1 for all i ∈ N . It is non-wasteful if Maa > 0 implies F(Ri, a, M) = 1 for

all i ∈ N and a ∈ A. Given any two allocations M and M ′, each agent i can compare the

lotteries Mi and M ′i using the first-order stochastic dominance relation Rsd
i : MiR

sd
i M ′i if

F(Ri, a, M) ≥ F(Ri, a, M ′) for all a ∈ A∪ {i}. Let MRsd
N M ′ if MiR

sd
i M ′i for all i ∈ N . M

Pareto dominates M ′ if MRsd
N M ′ and we do not have M ′Rsd

N M . Then, an allocation is

stochastic dominance efficient, or sd-efficient, if it cannot be Pareto dominated by any

allocation. We also define stochastic dominance relations for objects. For each a ∈ A, let

Ma ≽sd
a M ′a if F(≽a, i, M) ≥ F(≽a, i, M ′) for all i ∈ N . Then let M ≽sd

A M ′ if Ma ≽sd
a M ′a

for all a ∈ A.

A deterministic allocation µ is efficient if it can not be Pareto dominated by any

other deterministic allocation. It is stable if it is individually rational, non-wasteful,

and there is no justified-envy, i.e., there do not exist i, j ∈ N such that µ( j)Piµ(i) and

i ≻µ( j) j. A stronger fairness notion ensures that it respects not only the differences but

3We have made two simplifying assumptions in the model. First, there is only one copy of each object,
i.e., we focus on the one-to-one setting. Second, an object does not have an outside option. The main
results in the paper can be easily extended to the general many-to-one setting where there are multiple
copies of each object, and each object a ∈ A has its priority ordering defined over N ∪{a} such that i ∕∼a a
for all i ∈ N .
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also the indifferences in priorities: µ is strongly stable if it is individually rational, non-

wasteful, and there do not exist i, j ∈ N such that µ( j)Piµ(i) and i ≽µ( j) j. Applying the

deferred acceptance algorithm (DA) from Gale and Shapley (1962) after ties in priorities

are broken in any way yields a stable deterministic allocation. However, a strongly stable

deterministic allocation may not exist. This fact also suggests that in general random

allocations are needed to restore fairness regarding equal priority.

A random mechanism, or simply a mechanism, is a function f that assigns an

allocation f (p) to each problem p. If f (p) is deterministic for each p, then f is also

called a deterministic mechanism. f is said to satisfy a certain property if f (p) satisfies

this property for all p. Finally, f is strategy-proof if, for each agent, truth-telling yields

a lottery that first-order stochastically dominates the lottery obtained from reporting

any other preferences: for any p = (N , A, R,≽), i ∈ N and p′ =
󲷦
N , A, (R′i, R−i),≽

󲷧
, we

have fi(p)Rsd
i fi(p′).

3 Ex-Ante Fairness

We propose an axiom of fairness for random allocations from the ex-ante perspective.

Consider a problem p = (N , A, R,≽). First, we want a random allocation to respect the

differences in priorities, such that the assignment of the probability shares of each object

always satisfies the demands of higher ranked agents first.

Definition 1. A random allocation M is ex-ante stable if it is individually rational, non-

wasteful, and there do not exist i, j ∈ N and a ∈ A such that i ≻a j, M ja > 0, and

F(Ri, a, M)< 1.

This notion is discussed in Roth et al. (1993) in the context of two-sided match-

ing with strict preferences on both sides of the market, and is introduced to priority-

augmented allocation with weak priorities by Kesten and Ünver (2015). It is a direct

generalization of the stability concept to random allocations, from the ex-ante perspec-

tive. In particular, the last requirement in the definition is a probabilistic version of the

no justified-envy condition: if agent i has a higher priority than agent j at object a,

then j cannot receive a positive probability share of a, unless i can receive an outcome

weakly better than a for sure.

Second, we also want a random allocation to respect the indifferences in priorities.

One fairness notion in this regard is equal treatment of equals, which requires that every
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two agents with the same preferences and the same priorities at all objects should be

assigned the same lottery. While it is a more appropriate restriction in the special case

of house allocation, where all the agents are ranked equally by each object, it is a weak

requirement in general priority-augmented allocation, as two agents can differ not only

in their preferences but also in their priorities. For instance, if any two agents have

the same priority at every object except one, then, regardless of the preferences, equal

treatment of equals is satisfied by every deterministic allocation, and fairness consid-

erations regarding equal priorities are clearly ignored. Therefore, in light of the rich

priority domain, we define fairness "locally", and impose restrictions on the allocation

of each single object among the agents equally ranked by this object.

Definition 2. A random allocation M is ordinally fair if for any i, j ∈ N and a ∈ A with

i ∼a j, Mia > 0 implies F(R j, a, M)≥ F(Ri, a, M).

This concept is first introduced by Hashimoto et al. (2014) for house allocation.

They show that, together with individual rationality and non-wastefulness, it character-

izes the probabilistic serial mechanism (PS) from Bogomolnaia and Moulin (2001). We

extend it to the setting with priorities. If i ∼a j, Mia > 0 and F(R j, a, M) < F(Ri, a, M),
some probability shares of a can be transferred from i to j to reduce the differences

in their probabilities of receiving an object weakly better than a. Therefore, ordinal

fairness essentially requires that the allocation of an object among agents in the same

priority class should try to equalize their probabilities of receiving a weakly better object

(or, equivalently, their chances of receiving a strictly worse outcome). Consequently, an

agent with a smaller probability of receiving a strictly better object would generally be

assigned a larger share of this object.

Ordinal fairness follows an important general principle of fairness and social jus-

tice, compensation, which says the allocation of resources should compensate for the

differences in those primary individual characteristics, and equalize the shares of the

higher-order characteristic or the more essential commodity (Moulin, 2004).4 In apply-

ing this principle to our context, we consider the distribution of the probability shares of

an object a among equally ranked agents as an independent resource allocation prob-

lem, and choose each agent’s probability of receiving an object weakly better than a

as the higher-order characteristic, which is a natural choice in our simplistic model of

4See Moulin (2004) for detailed and formal discussions regarding four principles of fairness: exoge-
nous rights, compensation, reward, and fitness.

8



priority-augmented allocation. To achieve equality of the shares of such more essential

commodity, we compensate for the agents’ primary differences in preferences and pri-

orities for other objects, as well as different supply and demand levels at those objects,

which contribute to their different chances of receiving a weakly better object.

The two axioms defined above constitute the central concept in this paper.

Definition 3. A random allocation M is ex-ante fair if it is ex-ante stable and ordinally

fair.

Existing mechanisms generally fail to be ex-ante fair. For example, a widely-used

mechanism in school choice is DA with single tie-breaking (Abdulkadiroğlu et al., 2009):

an ordering of the agents is picked from the uniform distribution to break the ties in

priorities before DA is applied. Kesten and Ünver (2015) show that it does not satisfy

the probabilistic version of the no justified-envy condition, and is thus not ex-ante stable.

Below, we give a simple example in which it is not ordinally fair. We also present all the

ex-ante fair allocations in this example.

Example 1. Suppose that N = {1, 2, 3} and A= {a, b, c}. The preferences, priorities, and

the allocation M selected by DA with single tie-breaking are given as follows:

R1 R2 R3

a b a

b a c

c c b

≽a ≽b ≽c

2, 3 3 2

1 1, 2 1

3

M =

a b c

1 0 1
2

1
2

2 1
6

1
2

1
3

3 5
6 0 1

6

M is ex-ante stable but not ordinally fair: we have 2 ∼a 3, M3a > 0, and F(R2, a, M) =
2
3 <

5
6 = F(R3, a, M). In this case, all the probability shares of a are allocated between

these two agents, but agent 2 receives too few of a.

There exists a continuum of ex-ante fair allocations for this problem. For every x ∈
[2

3 , 3
4], the allocation M(x) below is ex-ante fair.

M(x) =

a b c

1 0 2x − 1 2− 2x

2 1− x 2x − 1 1− x

3 x 3− 4x 3x − 2

Note that M(x)Rsd
N M(y) if 2

3 ≤ y ≤ x ≤ 3
4 . The ex-ante fair allocation M(x) becomes

better for all agents as x increases, with the best one M(3
4) and the worst one M(2

3).
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4 Deferred Consumption

We construct a mechanism to establish the existence of an ex-ante fair allocation. In

fact, the mechanism always selects the best ex-ante fair allocation. Formally, given a

problem p = (N , A, R,≽), we say an allocation M is agent-optimal ex-ante fair if it is

ex-ante fair, and MRsd
N M ′ for every ex-ante fair allocation M ′.

In the special case of strict priorities, ex-ante fairness is reduced to ex-ante stability,

which is further equivalent to stability for deterministic allocations. Since every ex-

ante stable allocation can be represented as a lottery over some stable deterministic

allocations, the outcome of DA Pareto dominates every other ex-ante stable allocation,

i.e., it is agent-optimal ex-ante fair. On the other hand, in house allocation ex-ante

fairness is reduced to the combination of individual rationality, non-wastefulness and

ordinal fairness. Then, by Hashimoto et al. (2014), PS gives the unique ex-ante fair

allocation. Therefore, the agent-optimal ex-ante fair mechanism must be reduced to

DA and PS in these two special cases respectively.

In each step of DA, agents propose to objects, and every object tentatively accepts

a proposer based on priorities. The actual acceptance is deferred to the last step. In

PS, agents consume (or "eat") objects simultaneously at the unit rate during the unit

time interval. Our mechanism is defined by a procedure of deferred consumption that

combines the above features of DA and PS. In each step, agents propose to consume

objects during certain time intervals, and every object tentatively accepts some (portions

of) proposals based on priorities as well as the "first-come first-serve" principle. We first

use the problem in Example 1 to illustrate this procedure.

Example 1 (continued). In the first step, every agent proposes to consume her favorite

object (at the unit rate) during the whole time interval [0, 1]. Agent 2’s proposal is tenta-

tively accepted by object b. Given that both agent 1 and agent 3 want to consume object a

and 3≻a 1, similar to DA, object a tentatively accepts 3’s proposal and rejects 1’s proposal.

In the second step, 1 proposes to consume her second choice, b, during [0, 1]. As b

tentatively accepted 2’s proposal to consume during [0, 1] in the previous step and 1∼b 2,

similar to PS, its decision is based on the first-come first-serve principle. According to their

proposals, the two agents come at the same time t = 0. If they consume from t = 0, the

object is exhausted at t = 1
2 . Therefore, b tentatively accepts both agents’ proposals to

consume during [0, 1
2], and rejects their proposals to consume during [1

2 , 1].
Since they each have a proposal rejected, in the third step, 1 proposes to consume her
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next choice, object c, during the time interval [1
2 , 1], and 2 proposes to consume her next

choice a during [1
2 , 1]. Then 1’s proposal is tentatively accepted. On the other hand, object

a is now over-demanded: recall that it tentatively accepted 3’s proposal to consume during

[0, 1] in the first step. Since 2 ∼a 3, this is resolved by the first-come first-serve principle

as follows. If 2 and 3 consume a according to their proposals, then 2 starts to consume

from t = 1
2 , while 3 starts to consume from t = 0. a is exhausted at t = 3

4 , and hence

it tentatively accepts 2’s proposal to consume during [1
2 , 3

4], and 3’s proposal to consume

during [0, 3
4]. In addition, it rejects their proposals to consume during [3

4 , 1].
Finally, in the fourth step, both 2 and 3 propose to consume c during [3

4 , 1], which ten-

tatively accepted 1’s proposal to consume during [1
2 , 1] in the last step. Since the measures

of these proposals from the three agents sum to 1, i.e., c can satisfy all the demands, these

proposals are accepted, and the deferred consumption procedure terminates. We interpret

the final consumption schedule of each agent as a lottery, which gives the agent-optimal

ex-ante fair allocation M(3
4):

M(3
4) =

a b c

1 0 1
2

1
2

2 1
4

1
2

1
4

3 3
4 0 1

4

As can be seen in this example, the outcome allocation is ex-ante stable since an

object accepts proposals in favor of agents with higher priorities. On the other hand,

ordinal fairness is guaranteed by the first-come first-serve principle.

We next give the formal definition of the mechanism. Consider any problem p =
(N , A, R,≽). For an object a ∈ A, a proposal from an agent i ∈ N is represented by an

interval [x , y], where 0≤ x < y ≤ 1, meaning that agent i proposes to consume object

a during the time interval [x , y]. The object may face proposals from different agents at

the same time, and its acceptance or rejection decision is based on its choice rule defined

as follows.

Let
󲷮
[x i, yi]
󲷯

i∈S
be a collection of proposals to consume a from some agents S ⊆ N ,

which is referred to as a choice set. If
󰁓

i∈S(yi − x i) ≤ 1, then a can accommodate all

these proposals and hence it chooses all of them. If
󰁓

i∈S(yi − x i) > 1, then a is over-

demanded, and it chooses some (portions of) proposals such that their measures sum

to one, through multiple consumption processes: the agents in the highest priority class

(among S) consume a first according to their proposals; if a is not exhausted after their
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consumption, then the agents in the second highest priority class consume according to

their proposals, and so on; after a is exhausted, for each i ∈ S, her proposal [x i, y ′i ] is

chosen if she has consumed a during [x i, y ′i ] in the previous processes.

Therefore, more formally, object a chooses the proposals
󲷮
[x i, y ′i ]
󲷯

i∈S′ , where S′ ⊆ S,

that satisfy the following:
󰁓

i∈S′(y
′
i − x i) = 1, and there exists i∗ ∈ S′ such that y ′i∗ is the

"cut-off", i.e., for any j ∈ S:

• If j ≻a i∗, then j ∈ S′ and y ′j = y j.

• If j ∼a i∗ and x j < y ′i∗ , then j ∈ S′ and y ′j =min{y j, y ′i∗}.

• If i∗ ≻a j, or, j ∼a i∗ and x j ≥ y ′i∗ , then j /∈ S′.

Using these choice rules of objects, we define the deferred consumption procedure:

Step 1. Each agent proposes to consume her favorite option (which is an

object or her outside option) from t = 0 to t = 1, i.e., during the whole time

interval [0, 1]. Each object chooses from the proposals that it receives, ten-

tatively accepts some proposals by its choice rule, and rejects the remaining

proposals.

Step k ≥ 2. For each agent, if she has a proposal [x , y] rejected by some

object a in the last step, then she proposes to consume her next best option

to object a during [x , y]. Each object considers the proposals received in

this step, as well as the proposals tentatively accepted earlier. Then, it ten-

tatively accepts some proposals by its choice rule, and rejects the remaining

proposals.

The procedure terminates in some step k if no object rejects any proposal in

this step.

In this procedure, it is possible that an agent first has a proposal [x2, x3] tentatively

accepted by an object a, then in a later step, due to being rejected by a better object, she

proposes to consume a again during [x1, x2]. In this case we combine the proposals: let

[x1, x3] be the only proposal from this agent in the choice set of object a. We similarly

combine proposals to outside options. Then we have the following useful fact that makes

the procedure more transparent. It also indicates that the choice rule of each object can

always be appropriately applied.
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Observation 1. Consider any step k of the deferred consumption procedure. After agents

propose in this step, for each i ∈ N there exist x1 < x2 <, . . . ,< xℓ, where x1 = 0 and

xℓ = 1, such that:

• For any 1 ≤ ℓ1 ≤ ℓ − 1, agent i’s proposal [xℓ1 , xℓ1+1] is in the choice set of some

a ∈ A, or she has proposed to consume her outside option during [xℓ1 , xℓ1+1].

• If 1 ≤ ℓ1 < ℓ2 ≤ ℓ − 1, then her proposal [xℓ1 , xℓ1+1] is in the choice set of some

a ∈ A, and either her proposal [xℓ2 , xℓ2+1] is in the choice set of some b ∈ A with

aPi b, or she has proposed to consume her outside option during [xℓ2 , xℓ2+1].

This partition result can be easily proved by induction. It is worth emphasizing that

if an agent has a proposal rejected by an object a, then in the next step she proposes

to consume the option next to a in her preference list. Then, in light of Observation 1,

generally an agent may propose to multiple objects in a step, and she may also propose

to an object that has rejected her before (see Example 2 below).

Given the numbers x1, . . . , xℓ in Observation 1, for each a ∈ A, let M k
ia = xℓ1+1 − xℓ1

if there exists 1 ≤ ℓ1 ≤ ℓ − 1 such that agent i’s proposal [xℓ1 , xℓ1+1] is in the choice

set of a, and M k
ia = 0 otherwise. We interpret the |N |× |A| matrix M k as the tentative

assignment after agents propose in step k, which is not necessarily a well-defined random

allocation. Let M k
ii = 1 −
󰁓

a∈A M k
ia for each i ∈ N . In general, as in Example 2, the

deferred consumption procedure may not be finite, leading to an infinite sequence of

tentative assignments {M k}∞k=1. For simplicity, if the procedure terminates in step k̄,

then we still construct an infinite sequence {M k}∞k=1 by setting M k = M k̄ for all k > k̄.

As an agent always proposes to consume her next best option after she has a proposal

rejected, for all i ∈ N and a ∈ A,
󲷮

F(Ri, a, M k)
󲷯∞

k=1
is a decreasing (and bounded)

sequence, and hence it converges.5 It follows that the sequence {M k
ia}∞k=1 also converges.

Therefore, the outcome of the deferred consumption procedure for the current problem

p is represented by a |N |× |A| matrix f DC(p) such that

f DC
ia (p) = lim

k→∞
M k

ia

for all i ∈ N and a ∈ A.

5We abused the notation slightly, since F(Ri , a, M) was only defined for an allocation M . But this will
not cause any confusion.
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Theorem 1. For any problem p, f DC(p) is the agent-optimal ex-ante fair random alloca-

tion.

We refer to f DC as the deferred consumption mechanism (DC). Due to the spec-

ification of the objects’ choice rules, the deferred consumption procedure eventually

produces a consumption schedule in which, at any point of time, every agent does not

envy the object being consumed by another agent, unless the latter agent has a higher

priority for the object. In the special case of house allocation, such consumption sched-

ule can be obtained by simply letting the agents simultaneously consume their best

available objects. This gives an intuitive explanation on why DC is equivalent to PS in

this case. On the other hand, it is obvious from the construction that DC is the same as

DA in the special case of strict priorities.

Below we give another example to illustrate the mechanism, where the deferred

consumption procedure is infinite.

Example 2. Suppose that N = {1, 2, 3} and A = {a, b, c}. The preferences and priorities

are given as follows.

R1 R2 R3

a b a

b a b

c c c

≽a ≽b ≽c

2, 3 3 2

1 1, 2 1

3

In the first two steps, we have M1
1a = M1

2b = M1
3a = 1, and M2

1b = M2
2b = M2

3a = 1. Then,

for every odd number k ≥ 3, the tentative assignments M k and M k+1 are given by the

following matrices:

M k =

a b c

1 0 1
2 xk 1− 1

2 xk

2 1
2 xk

1
2 xk 1− xk

3 xk 1− xk 0

M k+1 =

a b c

1 0 1
2 xk 1− 1

2 xk

2 1
2 − 1

4 xk
1
2 xk

1
2 − 1

4 xk

3 1
2 +

1
4 xk

1
2 − 1

4 xk 0

where x3 = 1, and if k ≥ 5,

xk = 1−
k−3

2󰁛

ℓ=1

(
1
4
)ℓ.

For any odd k ≥ 3, object a is over-assigned in M k (i.e.,
󰁓

i∈N M k
ia > 1), and in step

k it rejects a proposal with some measure y > 0 from both agent 2 and agent 3. Then, 3

14



proposes to consume object b in step k+ 1, which leads to both 1 and 2 having a proposal

with measure 1
2 y rejected by b. In step k+ 2, agent 2 proposes to consume object a again,

which then rejects a proposal with measure 1
4 y from both 2 and 3. The procedure continues

in this way infinitely, and the tentative assignments converge to the following agent-optimal

ex-ante fair allocation:

a b c

1 0 1
3

2
3

2 1
3

1
3

1
3

3 2
3

1
3 0

The infiniteness of the procedure is due to infinite rejection cycles among agents.

While each rejection cycle, once detected, can be resolved through a system of linear

equations, the procedure is rather complex and a rejection cycle may appear an infi-

nite number of times. The rejection cycles are further attributed to cyclic priority rela-

tions that involve ties. Given N and A, we say ≽ is acyclic if there do not exist n ≥ 2

distinct agents i1, . . . , in and n distinct objects a1, . . . , an such that ik ≽ak
ik+1 for each

k ∈ {1, . . . , n}, iℓ ≻aℓ iℓ+1 for some ℓ, and im ∼am
im+1 for some m, where in+1 = i1. Then

it can be shown that acyclicity of priorities is sufficient for the deferred consumption

procedure to be finite for any preference profile.

Finally, regarding incentive compatibility, DC is not a strategy-proof mechanism.

For instance, comparing the agent-optimal ex-ante fair allocations in Examples 1 and 2,

agent 3 can manipulate to receive her first choice with a larger probability.

In general, ex-ante fairness is not compatible with strategy-proofness. Recall that a

mechanism is defined for every problem p = (N , A, R,≽). Consider some N , A and ≽
such that |N |= |A|≥ 3 and i ∼a j for all i, j ∈ N and a ∈ A. Then for each R the unique

ex-ante fair allocation is given by PS. Bogomolnaia and Moulin (2001) show that in such

house allocation setting PS is manipulable, i.e., there exist R, i ∈ N and R′i such that we

do not have MiR
sd
i M ′i , where M and M ′ are the PS outcomes for p = (N , A, R,≽) and

p′ =
󲷦
N , A, (R′i, R−i),≽

󲷧
respectively. Therefore, we obtain the following impossibility.

Theorem 2. There does not exist a strategy-proof and ex-ante fair mechanism.

Positive results may arise if we consider a different setup: fix some N , A and ≽, and

define a mechanism as a function that maps every preference profile to an allocation.

Then a strategy-proof and ex-ante fair mechanism exists when ≽ is strict, as DA satisfies
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these properties. However, we cannot go much beyond strict priority structures. It can

be shown that if |A| ≥ 3 and there exists a strategy-proof and ex-ante fair mechanism,

then there do not exist distinct i, j, k ∈ N and a ∈ A such that i ∼a j ∼a k (there can

only be two-way ties), and either (1)
󲷲󲷲󲷮a ∈ A : ≽a is not antisymmetric

󲷯󲷲󲷲 ≤ 1 (at most

one object has ties), or (2)
󲷲󲷲󲷮i ∈ N : i ∼a j for some j ∈ N \ {i} and some a ∈ A

󲷯󲷲󲷲 ≤ 3

(at most three agents are involved in ties).

5 Properties of Ex-Ante Fair Allocations

We present additional properties of ex-ante fair allocations. In particular, it will be

shown that, as suggested by Example 1, the (potentially infinite) set of ex-ante fair

allocations is a complete and distributive lattice under the common preferences of the

agents. We will also explicitly construct the least upper bound and the greatest lower

bound of any subset of ex-ante fair allocations, which have natural interpretations.

Fix a problem p = (N , A, R,≽) in this section. Denote the set of all ex-ante fair

allocations as 󲺔 , and consider the partially ordered set (󲺔 , Rsd
N ). For any non-empty

S ⊆ 󲺔 , we define two |N | × |A| matrices, _S and ^S, as follows: for every i ∈ N and

a ∈ A,

(_S)ia = sup {F(Ri, a, M) : M ∈ S}− sup {F(Pi, a, M) : M ∈ S}, and

(^S)ia = inf {F(Ri, a, M) : M ∈ S}− inf {F(Pi, a, M) : M ∈ S}.

Moreover, let (_S)ii = 1−
󰁓

b∈A(_S)i b and (^S)ii = 1−
󰁓

b∈A(^S)i b. When S = {M , M ′},
we also write _S as M _ M ′, and ^S as M ^ M ′. The following result indicates that

if _S and ^S are ex-ante fair allocations, then they are the least upper bound and the

greatest lower bound of S under Rsd
N , respectively.

Lemma 1. For any i ∈ N and a ∈ A∪ {i}, we have F(Ri, a, _S) = sup {F(Ri, a, M) : M ∈
S}, and F(Ri, a, ^S) = inf {F(Ri, a, M) : M ∈ S}.

The next theorem establishes the lattice structure as well as other key properties of

ex-ante fair allocations.

Theorem 3. If {M , M ′} ⊆ S ⊆ 󲺔 , then we have the following:

(i) (Complete lattice) _S ∈ 󲺔 and ^S ∈ 󲺔 . Moreover, for any i ∈ N, either MiR
sd
i M ′i or

M ′i R
sd
i Mi; for any a ∈ A, either Ma ≽sd

a M ′a or M ′a ≽sd
a Ma.
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(ii) (Distributivity) If M ′′ ∈ 󲺔 , then M ′′ _ (M ^ M ′) = (M ′′ _ M)^ (M ′′ _ M ′), and

M ′′^ (M _ M ′) = (M ′′^ M)_ (M ′′^ M ′).
(iii) ("Rural hospital" theorem) For any i ∈ N and a ∈ A,

󰁓
b∈A Mi b =
󰁓

b∈A M ′i b, and󰁓
j∈N M ja =
󰁓

j∈N M ′ja. Moreover, Mi = M ′i if
󰁓

b∈A Mi b < 1, and Ma = M ′a if󰁓
j∈N M ja < 1.

(iv) (Two-sided efficiency) There does not exist a random allocation M ′′ ∕= M such that

M ′′Rsd
N M and M ′′ ≽sd

A M.

(v) (Conflicting interests) MRsd
N M ′ if and only if M ′ ≽sd

A M.

The above results generalize the familiar properties of stable matchings in the classi-

cal two-sided matching market, where both sides of the market have strict preferences,

i.e., the marriage problem considered in Gale and Shapley (1962).

The first part of statement (i) and statement (ii) extend Conway’s lattice theorem of

stable matchings (Knuth, 1976). Although ≽sd
A is generally not antisymmetric on all the

random allocations due to the priorities being weak, statement (v) implies that it is a

partial order on 󲺔 , and (󲺔 ,≽sd
A ) is also a complete and distributive lattice. The second

part of statement (i) indicates that, when S is finite, _S (resp. ^S) can be constructed

by letting each agent pick the best (resp. the worst) lottery from the ones under the

allocations in S. However, the least upper bound or the greatest lower bound of S

under ≽sd
A cannot be easily obtained by letting objects pick lotteries: for an object a ∈ A,

≽sd
a may not be antisymmetric on the set {Ma : M ∈ 󲺔}.6

Besides the lattice structure, the rural hospital theorem (McVitie and Wilson, 1970,

Roth, 1984, 1986) is another fundamental property of stable matchings in the two-sided

matching market. Statement (iii) shows a probabilistic version of this result for ex-ante

fair allocations: each object’s probability of being assigned to some agent is constant

among 󲺔 , and if this probability is less than one, then the object receives the same

lottery among 󲺔 . An analogous result also holds for each agent.

The last two statements have better economic interpretations if we envision that

each object has intrinsic preferences that are aligned with its priority ordering. That is,

each object always prefers an agent with a higher priority.7 In this context, statement

(iv) says that every ex-ante fair allocation is "sd-efficient" for the two sides of the market,

i.e., when the welfare of every agent and object is taken into account, and statement

6For instance, see the lotteries received by object a under ex-ante fair allocations in Example 1.
7For example, in school choice, a school’s priorities may be determined based on students’ academic

attainments, and hence largely reflect its preferences over students.
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(v) shows that the agents and the objects have conflicting interests regarding ex-ante

fair allocations.

6 Division

We introduce a new method of generating random allocations from deterministic allo-

cations, which we refer to as division. This offers a new perspective on some of the key

results in Theorem 3, as well as the construction of DC.

We start with the simplest example to illustrate the idea. There is only one object,

a, to be allocated to two agents, i and j, who have equal claim to it, i.e., i ∼a j. By any

standard the only fair random allocation is Mia = M ja = 0.5. We take the stance that

deterministic allocations are more fundamental than random allocations, and want to

understand how the random allocation M can be constructed from deterministic allo-

cations. The first interpretation is that M is generated by the method of randomization.

That is, we randomize over the two deterministic allocations in which one agent receives

a, such that each of the two is picked with probability 0.5.

We next give another possible interpretation. To resolve the conflicting claims of the

two agents, we divide the claim of each k ∈ {i, j} into two parts, k1 and k2. The object is

also divided into two parts, a1 and a2, so that each kx , where k ∈ {i, j} and x ∈ {1, 2},
represents a claim to one part of the object. We then prioritize the divided claims:

for both parts of the object, i1 and j1 have the same priority, i2 and j2 have the same

priority, and each of i1 and j1 has a higher priority than each of i2 and j2. This leads to

a divided problem, in which we essentially allocate two objects, {a1, a2}, to four agents,

{i1, i2, j1, j2}, where each agent finds the two objects indifferent. This division operation

treats the two original agents in the same way, and a fair deterministic allocation can

be found in the divided problem due to the more refined priority structure: there exists

a (strongly) stable deterministic allocation where i1 and j1 each receives one object,

which generates the random allocation M for the original problem.

This idea of division can be easily extended to an arbitrary problem. In general,

we divide (the claim of) each agent, as well as each object, into some finite number of

parts. A part of an agent i has weak preferences over the objects parts, which are simply

extended from the preferences of i. Moreover, we grant different priorities to different

parts of each agent. Given the priorities in the original problem, the parts of a higher

ranked agent are always ranked higher, and, for equally ranked agents, their parts are
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ranked based on indices.

We provide a formal framework that will also be used throughout Section 7. Con-

sider a problem p = (N , A, R,≽). For simplicity, assume that |N | = |A|, aPi i for all a ∈ A

and i ∈ N , and every allocation is a bistochastic matrix.8 Given an integer q > 0, each

agent i ∈ N is divided into q parts, i1, . . . , iq. Let N q = {i x : i ∈ N , x = 1, . . . , q}. Each

object a ∈ A is also divided into q parts, a1, . . . , aq, and let Aq = {ax : a ∈ A, x = 1, . . . , q}.
Each i x ∈ N q has a preference relation Rq

i on Aq such that for all a y , bz ∈ Aq, a yRq
i bz if and

only if aRi b. Then Pq
i and Iq

i denote the asymmetric and symmetric components of Rq
i ,

respectively. Each ax ∈ Aq has a priority ordering≽q
a over N q such that for all i y , jz ∈ N q,

i y ≽q
a jz if and only if either i ≻a j, or, i ∼a j and y ≤ z. Let ≻q

a and ∼q
a denote the

asymmetric and symmetric components of ≽q
a, respectively. Then, pq = (N q, Aq, Rq,≽q)

denotes the q-divided problem of p.

We assume the preferences are strict in the original problem p as before, although pq

is a problem with weak preferences. Alternatively, pq can be interpreted as a many-to-

one problem with strict preferences, as each part of an agent finds all parts of an object

indifferent. A deterministic allocation µ for pq generates a random allocation M(µ, pq)
for p: for all i ∈ N and a ∈ A,

Mia(µ, pq) =
1
q

󲷲󲷲󲷮x ∈ {1, . . . , q} : µ(i x) = a y for some y ∈ {1, . . . , q}
󲷯󲷲󲷲.

Compared with the randomization method, the division method could deliver bet-

ter efficiency and fairness properties from the ex-ante perspective. To start with, it is

straightforward to see that if µ is efficient for pq, then M(µ, pq) is sd-efficient for p.

In contrast, a randomization over efficient deterministic allocations gives a random al-

location that usually only satisfies the weaker notion of ex-post efficiency. Formally, a

random allocation is ex-post efficient (resp. ex-post stable) if it can be represented

as a lottery over efficient (resp. stable) deterministic allocations. Regarding fairness,

in general, we can choose a deterministic allocation µ that respects the more refined

priority structure in the divided problem in some way, such that M(µ, pq) satisfies some

desirable fairness properties.9 As one example, while a randomization over stable deter-

ministic allocations only leads to an ex-post stable random allocation, M(µ, pq) satisfies

8Under these assumptions, we no longer need to consider individual rationality or non-wastefulness.
Moreover, for each i ∈ N , we only need to specify her preferences over A, instead of A∪ {i}.

9Depending on the application, we do not necessarily respect the priority structure in the sense of
stability. See the random mechanisms discussed in Sections 7.2 and 7.3.
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the stronger notion of ex-ante stability if µ is stable. More importantly for the current

paper, it can also be easily shown that M(µ, pq) is ex-ante fair if µ is strongly stable.

Therefore, strongly stable deterministic allocations can generate ex-ante fair random

allocations through the division method. However, this approach to study ex-ante fair-

ness has two limitations. First, it is not clear how to find a proper q such that a strongly

stable deterministic allocation for pq exists. Second, it is impossible to construct the

whole set of ex-ante fair allocations by the division method, since there can be a con-

tinuum of ex-ante fair allocations. Motivated by these issues, we envision a continuum

divided problem, where each agent and object o ∈ N ∪ A is divided into a continuum of

parts with measure 1, represented by
󲷮

ox : x ∈ [0, 1]
󲷯
, and preferences and priorities

are defined in the same way as in a finitely divided problem.

For every ex-ante fair allocation M , we can find a bijection µ :
󲷮

i x : i ∈ N , x ∈
[0, 1]
󲷯
→
󲷮

ax : a ∈ A, x ∈ [0, 1]
󲷯

such that for any i ∈ N , a ∈ A and x ∈ [0, 1], µ(i x) ∈󲷮
a y : y ∈ [0, 1]
󲷯

if F(Pi, a, M) < x ≤ F(Ri, a, M), or, F(Pi, a, M) = 0 = x < F(Ri, a, M).
Then µ is a strongly stable deterministic allocation for the continuum divided problem,

which generates M for the original problem. Note that the priorities in the continuum

divided problem are almost strict, and hence strong stability is almost equivalent to sta-

bility. Therefore, such connection between ex-ante fairness and (strong) stability helps

explain why the lattice theorem as well as the rural hospital theorem can be extended

to ex-ante fair allocations.10

In addition, DC is essentially generated by applying DA to continuum divided prob-

lems: when agent i’s parts
󲷮

i x : x ∈ [y, z]
󲷯

apply to the parts of object a, this is trans-

lated to i’s proposal to consume a during the time interval [y, z]. However, instead of

tracking the atomless parts of agents in a continuum divided problem, in Section 4 we

focused on the original problem directly, and gave a simple and intuitive description of

the mechanism.

While applying DA to continuum divided problems does not generate a strategy-

proof mechanism, DA with single tie-breaking, a randomization over DA, is strategy-

proof. In general, there is a clear trade-off between the randomization method and the

division method. Although we can achieve better ex-ante properties of fairness and effi-

ciency using the division method, applying a strategy-proof deterministic mechanism to

10While we can prove them by extending the proofs of the existing results in the two-sided matching
market to the continuum divided problem, several other results in Theorem 3 cannot be fully explained
by existing results of stable matchings, including the completeness of the lattice, "for any i ∈ N , either
MiR

sd
i M ′i or M ′i R

sd
i Mi" in statement (i), statements (iv) and (v).

20



divided problems usually does not generate a strategy-proof random mechanism, which

can also be seen in other examples in the next section. In contrast, a randomization over

strategy-proof deterministic mechanisms is strategy-proof.

7 Additional Applications of Division

In the end, we present some additional applications of the division method, and mostly

focus on allocation problems with simple and special priority structures. For these prob-

lems we show that several previous generalizations of PS can be generated by apply-

ing well-known deterministic mechanisms to finitely divided problems. For simplicity,

in this section we assume that for any problem p = (N , A, R,≽) under consideration,

|N |= |A|, aPi i for all a ∈ A and i ∈ N , and every allocation is a bistochastic matrix.

7.1 House Allocation Under Weak Preferences

In a house allocation problem under weak preferences, p = (N , A, R,≽), Ri is not neces-

sarily antisymmetric for any i ∈ N . Moreover, i ∼a j for all i, j ∈ N and a ∈ A. Let 󲺟HA

denote the collection of all such problems.

Given any problem p = (N , A, R,≽) under weak preferences, we say two allocations

M and M ′ are welfare equivalent if MRsd
N M ′ and M ′Rsd

N M . Moreover, for any i ∈ N ′ ⊆ N

and A′ ⊆ A, let Bi(A′) denote the set of maximal elements in A′ according to Ri, and

BN ′(A′) = ∪ j∈N ′B j(A′).
Katta and Sethuraman (2006) generalize PS to allow for weak preferences by intro-

ducing the sd-efficient extended PS (EPS) solution. The complete definition through

parametric networks is rather involved, and we present a simplified description of the

allocation procedure from Heo and Yılmaz (2015). Consider any p = (N , A, R,≽) ∈ 󲺟HA.

Let A0 = A, E0 = 󲅭, and d0(i) = 0 for all i ∈ N . In each step k ≥ 1, let

Ak = Ak−1\Ek−1, and Nk be the largest set of agents that solves the following

problem:

min
N ′⊆N ,N ′ ∕=󲅭

|BN ′(Ak)|−
󰁓

i∈N ′ dk−1(i)
|N ′|

Define

λk =
|BNk
(Ak)|−
󰁓

i∈Nk
dk−1(i)

|Nk|
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and Ek = BNk
(Ak). Then the objects Ek are allocated to Nk in step k: each

i ∈ Nk is assigned λk+dk−1(i) of the objects in Bi(Ak). Set dk(i) = 0 if i ∈ Nk,

and dk(i) = dk−1(i) + λk otherwise. The procedure terminates in step k̄ if

Ek̄ = Ak̄.

In each step k, the "bottleneck set" Nk is identified. There may be multiple ways of

allocating the objects Ek to the agents Nk, but all the outcome allocations are welfare

equivalent. Denote the set of these allocations as f EPS(p). Heo and Yılmaz (2015) show

that an allocation M is ordinally fair if and only if M ∈ f EPS(p).
Next, we relate EPS to the classical efficient deterministic mechanisms for 󲺟HA: se-

rial dictatorships from Svensson (1994). Given any problem p = (N , A, R,≽) under

weak preferences, choose an ordering σ of the agents, where σ : {1, . . . , |N |}→ N is a

bijection. Let D0 be the set of all deterministic allocations for p. For k ≥ 1, define Dk

as the set of deterministic allocations most preferred by σ(k) among the ones in Dk−1.

That is,

Dk =
󲷮
µ ∈ Dk−1 : µ(σ(k))Rσ(k)ϕ(σ(k)) for all ϕ ∈ Dk−1

󲷯
.

Then f SD(σ, p) = D|N | is the set of (welfare equivalent) deterministic allocations selected

by the serial dictatorship with respect to σ.

Moreover, for any integer q > 0, let 󲺞 (p, q) be the collection of orderings of N q such

that for any σ ∈ 󲺞 (p, q) and i x , j y ∈ N q with x < y , σ−1(i x) < σ−1( j y). We are ready

to present the main result in this subsection.

Proposition 1. Consider any p = (N , A, R,≽) ∈ 󲺟HA. Let q = (n!)n, where n = |N | = |A|.
Then for any σ ∈ 󲺞 (p, q) and µ ∈ f SD(σ, pq), M(µ, pq) ∈ f EPS(p).

Thus, applying serial dictatorships to the divided problems generates EPS. The or-

dering σ has to be chosen from the set 󲺞 (p, q) to respect the differences in the priori-

ties in pq. After dividing each agent and object into the "correct" number of parts, i.e.,

q = (n!)n, for every x ∈ {1, . . . , q} the ordering among the agents in {i x : i ∈ N} does

not affect the outcome of the serial dictatorship in terms of welfare, and none of them

envies another’s assignment. Therefore, each µ ∈ f SD(σ, pq) is strongly stable for pq.

A related result in Kesten (2009) embeds the idea of division. He considers a house

allocation problem p under strict preferences, and replicates each object such that there

are k copies of it. For each possible ordering of the agents, let the agents choose objects

sequentially. They choose one object at a time so that the serial dictatorship is applied
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k times. Then a random allocation is computed by taking the average of the k · (n!)
possible serial dictatorship outcomes. He shows that this allocation converges to the

PS outcome as k → ∞. Technically, this replication method is essentially equivalent

to division. In our context, (the proof of) his result implies that for any σ ∈ 󲺞 (p, q),
as q→∞, M( f SD(σ, pq), pq) converges to the PS outcome. While the focus of Kesten

(2009) is on explaining the efficiency loss of random serial dictatorship, we emphasize

the idea of generating random mechanisms through finite division in a more general

setting with weak preferences.

7.2 House Allocation with Existing Tenants

In house allocation with existing tenants (Abdulkadiroğlu and Sönmez, 1999), some ob-

jects are private endowments while others are common endowments. This can be mod-

eled via weak priorities such that for each privately owned object the owner has a higher

priority than all the other agents. Formally, let 󲺟HET denote the collection of such prob-

lems (under strict preferences). For each p = (N , A, R,≽) ∈ 󲺟HET, there exist non-empty

N(p) ⊆ N (the existing tenants), A(p) ⊆ A, and a bijection ep : N(p)→ A(p) such that

• for each a ∈ A(p), e−1
p (a)≻a i ∼a j for all i, j ∈ N \ {e−1

p (a)}, and

• for each a ∈ A\ A(p), i ∼a j for all i, j ∈ N .

In this case, ex-ante stability is equivalent to the key requirement that each existing

tenant’s lottery first-order stochastically dominates the degenerate lottery of receiving

her endowment, which ensures voluntary participation. Both Yılmaz (2010) and Zhang

(2017) propose an ex-ante stable and sd-efficient mechanism by generalizing PS.

First, we refer to the mechanism of Yılmaz (2010) as ex-ante stable PS. Let p =
(N , A, R,≽) ∈ 󲺟HET. In this mechanism, agents still consume objects at the unit rate, but

to satisfy the ex-ante stability constraints, for any N ′ ⊆ N(p), the agents N ′ are entitled

to the objects UN ′ = ∪i∈N ′{a ∈ A : aRiep(i)} in the following sense: if at some point

of time, the total remaining fractions of these objects are equal to the total remaining

demands of N ′, then any agent not in N ′ cannot further consume the objects UN ′ .

One of the simplest stable and efficient deterministic solutions to the problem p ∈
󲺟HET is a stable serial dictatorship.11 It is in the same vein as the serial dictatorships

11See Manjunath and Westkamp (2021) and Biró et al. (2022) for discussions of such mechanisms in
the context of multi-unit exchange of indivisible objects.

23



defined in Section 7.1, and the only difference is that the procedure starts with all stable

deterministic allocations for p, i.e., the initial set D0 is the set of deterministic allocations

in which no existing tenant receives an object worse than her endowment. Then, we

extend this idea of stable serial dictatorships to a divided problem pq as follows. Let

σ ∈ 󲺞 (p, q). Define the initial set D0 as the set of deterministic allocations (for pq)

in which no existing tenant has a part that is assigned a part of an object worse than

her endowment. Then, for k ≥ 1, let Dk be the set of deterministic allocations most

preferred by σ(k) among the ones in Dk−1. If q = (n!)n
2
, where n = |N | = |A|, it can be

shown that for any µ ∈ Dnq, M(µ, pq) is the outcome of the ex-ante stable PS.12

Second, we consider the eating-trading algorithm (ETA) (Zhang, 2017, Yu and

Zhang, 2021). In each step, if some existing tenants demand each other’s endowment

and form a cycle, then they exchange probability shares of their endowments. If there

is no such cycle, then agents consume their best available objects at possibly different

rates: each agent has the same basic consuming rate of 1, and she gets an additional

rate equal to the sum of the rates of those agents who are consuming her endowment.

We relate ETA to the original deterministic mechanisms proposed for 󲺟HET in Ab-

dulkadiroğlu and Sönmez (1999), the top trading cycles (TTC) mechanisms.13 In fact,

in order to apply to divided problems we need the more general form of the TTC mech-

anisms in Abdulkadiroğlu and Sönmez (2003), defined for any priority-augmented allo-

cation problem p = (N , A, R,≽). Given an ordering σ of the agents in p, the mechanism

is defined through the following procedure.

In each step, consider the remaining agents and the remaining objects. Let

each agent point to her favorite object, and each object point to the agent

with the highest priority (if there is a tie, break it usingσ). Then there exists

at least one cycle. Let each agent in a cycle be assigned the object that she

points to. After removing the agents and objects in cycles, we continue to

the next step. The procedure terminates when all the agents are assigned.

12We omit formal proofs of results in this subsection which use very similar techniques as the proof of
Proposition 1.

13Zhang (2017) shows that ETA can be interpreted as a procedure in which agents trade their fractional
endowments, where in each step the remaining fractions of an object that is not owned by any remaining
agent are equally distributed as private fractional endowments. Following this study, Yu and Zhang
(2021) define a more general parametric class of trading algorithms that incorporate ETA as a special
case. We will also interpret ETA as a trading procedure, but from a different perspective. Our focus is
on establishing an explicit connection between ETA and the deterministic TTC mechanisms through the
method of division.
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For TTC to generate ETA, we need to make two slight modifications to the divided

problems. Consider p = (N , A, R,≽) ∈ 󲺟HET and an integer q > 0. We first break the ties

in preferences: for each i x ∈ N q, define R̃q
i such that a y R̃q

i bz if and only if aPi b, or, a = b

and y ≤ z. Then TTC, as defined above, can be applied to (N q, Aq, R̃q,≽q). However, this

may cause an existing tenant to lose her basic consuming rate. We give a more favorable

treatment to the existing tenants, by reversing the priority ordering of the parts of each

privately owned object over the parts of its owner: for each ax ∈ Aq, define ≽̃q
a such

that for all i y , jz ∈ N q, if a ∈ A(p) and i = j = e−1
p (a), then i y≽̃q

a jz⇔ y ≥ z; otherwise,

i y≽̃q
a jz ⇔ i y ≽q

a jz. Denote the modified q-divided problem as p̃q = (N q, Aq, R̃q, ≽̃q).
Then, it can be shown that if we choose q = (n!)n+|N(p)|, where n= |N |, and any ordering

of N q, applying the TTC mechanism to p̃q generates the ETA outcome for p.

7.3 A Probabilistic Version of Boston Mechanism

The Boston mechanism (Abdulkadiroğlu and Sönmez, 2003) is one of the most popular

school choice mechanisms in practice. Under strict priorities, it selects a deterministic

allocation through a procedure similar to DA, with the only difference being that in each

step the acceptance is final. This mechanism is neither stable nor strategy-proof, and

its popularity mainly comes from the property of respecting preference ranks (Kojima

and Ünver, 2014), which also implies efficiency, in the sense that if one agent prefers

the object received by another agent, then the latter agent must rank the object weakly

higher in her preference list.

However, when priorities are weak and ties are broken randomly, the randomized

Boston mechanism loses its attractive properties ex-ante. Harless (2018) defines the

notion of respect for rank for a random allocation M in a problem p = (N , A, R,≽),
which requires that for any i, j ∈ N and a ∈ A, if F(Ri, a, M) < 1 and M ja > 0, then

|{b ∈ A : bR ja}| ≤ |{b ∈ A : bRia}|. Respect for rank implies sd-efficiency, and he

shows that the randomized Boston mechanism is not even sd-efficient. Then, instead

of randomization, we can apply the Boston mechanism to continuum divided problems

to generate a random mechanism similar to DC, with the only difference being that in

each step the acceptance of proposals is final. This probabilistic version of the Boston

mechanism satisfies respect for rank, and thus sd-efficiency.14

14In the special case of house allocation, Harless (2018) and Chen et al. (2023) propose and charac-
terize another probabilistic version of the Boston mechanism that also satisfies respect for rank, but their
mechanism is different from ours in this domain.
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7.4 Multi-Unit Demands

Finally, in house allocation problems with multi-unit demands, there are two classes of

serial dictatorships. In the first class, each agent i with a demand of di picks the best di

objects available when it is her turn. Applying such a mechanism to (finitely) divided

problems can lead to the generalization of PS by Heo (2014), in which each agent’s

consuming rate is equal to her demand. In the second class, each agent picks only one

object when it is her turn, and hence there are multiple rounds of sequential assign-

ments. Applying such a mechanism to divided problems can lead to the generalization

of PS by Kojima (2009), in which each agent i with a demand of di consumes objects

during the time interval [0, di], at the unit rate.15

8 Related Studies

We discuss closely related studies in two aspects.

8.1 Random Mechanism Design

DC closely resembles the fractional deferred acceptance mechanism (FDA) of Kesten

and Ünver (2015). In each step of FDA, fractions of agents propose to objects. Each ob-

ject tentatively accepts the fractions of agents with higher priorities first, and for agents

with equal priority, it tries to accept an equal fraction of each one. FDA is designed

to select the best random allocation that satisfies strong ex-ante stability, which is the

combination of ex-ante stability and no ex-ante discrimination. The latter axiom differs

from ordinal fairness, and essentially requires that the allocation of an object among

equally ranked agents should try to equalize their probabilities of receiving this ob-

ject. Moreover, Kesten and Ünver (2015) also propose a second random mechanism by

adding a probability trading stage to improve upon FDA. Its outcome is ex-ante stable,

undominated within ex-ante stable allocations, and satisfies equal treatment of equals.

As far as we know, there are two other studies that also unify PS and DA. Afacan

(2018) introduces a novel model with random priorities, where a probability distribu-

tion over all strict priority structures is given as a component of the allocation problem.

15For studies on the first class of serial dictatorships, see, for example, Pápai (2000, 2001), Klaus and
Miyagawa (2001) and Ehlers and Klaus (2003). Bogolmonaia et al. (2014) discuss the second class.
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He proposes the constrained probabilistic serial mechanism that satisfies claimwise stabil-

ity and constrained sd-efficiency. This mechanism is reduced to DA when the priorities

are deterministic, and to PS when every two strict priority structures are equally likely.

On the other hand, Aziz and Brandl (2022) extend the eating procedure in PS and

introduce the vigilant eating rule (VER) that applies to the general many-to-many setting

with weak preferences and almost arbitrary constraints. Whenever the set of feasible

random allocations is non-empty and compact, it chooses a constrained sd-efficient al-

location. In our priority-augmented allocation setting, when constraints are imposed by

some stability concept (such as ex-post stability or ex-ante stability), VER is reduced to

PS if everyone has the same priority for every object, and to DA if priorities are strict.

Furthermore, when constraints are imposed by ex-ante fairness, VER and DC give

equivalent outcomes, although they are defined through very different procedures. While

the VER algorithm takes the whole non-empty set of ex-ante fair allocations as inputs,

DC shows the existence of an ex-ante fair allocation, as well as the uniqueness of con-

strained sd-efficient allocation in this case.

8.2 Structural Results on Stable Random Matchings

Roth et al. (1993) establish the lattice structure of stable fractional matchings in the clas-

sical two-sided market. As they assume strict preferences from both sides and fractional

stability is weaker than ex-ante stability, our structural results on ex-ante fair allocations

are independent of their study.

Alkan and Gale (2003) take a revealed preference approach to study schedule match-

ings between workers and firms. A schedule matching specifies the amount of time each

worker spends with each firm, and can be interpreted as a random allocation when the

total available amount of time is one for each worker and firm. Although their general

model can potentially be used to handle weak orderings, our Theorem 3 is independent

of their similar structural results on stable schedule matchings. There is no systematic

way of constructing choice functions based on preferences and priorities, so that we can

define an Alkan-Gale problem isomorphic to our problem and establish the equivalence

of stable schedule matchings and ex-ante fair allocations.

Although their main focus is on (median) rationalizability of matchings, Echenique

et al. (2021) show similar structural results in a two-sided aggregate matching model

with finite sets of types of men and women. An aggregate matching is a matrix giving
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the mass of each type of men matched with each type of women. Therefore, when the

mass of every type is one, their model corresponds to ours and an aggregate matching

can be interpreted as a random allocation. As preferences from both sides are at the

type level and strict, their stability notion is equivalent to ex-ante stability as well as ex-

ante fairness. Then (i), (ii), the first part of (iii), and (v) in Theorem 3 generalize their

lattice result and other structural properties established for stable aggregate matchings.

9 Conclusion

We introduced an appealing fairness concept for the allocation of discrete resources

under weak priorities. The main focus of our study is on an ex-ante fair mechanism

and the properties of ex-ante fair allocations. The division method underlies our anal-

ysis, and also provides a new perspective on various other random mechanisms. In the

end, we briefly mention two plausible directions for future research. First, it is inter-

esting to explore the performance of DC in large markets. Given the work of Che and

Kojima (2010), it is reasonable to conjecture that DA with single tie-breaking and DC

are asymptotically equivalent under some regularity conditions. Second, we hope the

division method can be applied to other classes of allocation or matching problems to

generate new random mechanisms with good ex-ante properties.

Appendix A

A.1 Proof of Theorem 1

Consider any problem p = (N , A, R,≽). First, in the proof we will use the following

crucial result regarding the deferred consumption procedure for p and the sequence of

tentative assignments {M k}, which can be easily shown using Observation 1.

Claim 1. In any step k of the deferred consumption procedure, an agent i ∈ N has a

proposal [x , y] rejected by an object a ∈ A if and only if F(Ri, a, M k) = y, F(Ri, a, M k+1) =
x, and x < y.

Let f DC(p) = M ∗. By construction, for all i ∈ N and a ∈ A, M ∗ia ≥ 0 and
󰁓

b∈A M ∗i b ≤
1. Suppose that some object a ∈ A is over-assigned, i.e.,

󰁓
i∈N M ∗ia > 1. Given that

limk→∞
󲷮󰁓

i∈N M k
ia

󲷯
=
󰁓

i∈N M ∗ia > 1, there exist K and ε > 0 such that for any k >
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K ,
󰁓

i∈N M k
ia > 1 + ε. This implies that for any k > K , the sum of the measures of

the proposals rejected by a is larger than ε in step k of the (deferred consumption)

procedure. Then, by Claim 1,
󰁓

i∈N F(Ri, a, M k)−
󰁓

i∈N F(Ri, a, M k+1)> ε for all k > K ,

which is clearly impossible. Therefore, M ∗ is a well-defined random allocation.

We next show M ∗ is ex-ante fair. It is individually rational as each agent never

proposes to consume an object worse than her outside option. For any object a ∈ A such

that
󰁓

i∈N M ∗ia < 1, since limk→∞
󲷮󰁓

i∈N M k
ia

󲷯
< 1, there exists K such that

󰁓
i∈N M k

ia < 1

for all k > K . It follows that object a never rejects a proposal in the procedure. Then

for any i ∈ N , given that F(Ri, a, M1) = 1, Claim 1 implies that F(Ri, a, M k) = 1 for all

k. Hence, F(Ri, a, M ∗) = 1, and M ∗ is non-wasteful.

Suppose that M ∗ is not ex-ante stable. Then there exist i, j ∈ N and a ∈ A such that

i ≻a j, F(Ri, a, M ∗)< 1 and M ∗ja > 0. Since F(Ri, a, M1) = 1 and limk→∞ F(Ri, a, M k)<
1, by Claim 1, agent i has a proposal rejected by a in some step K . Then, by the choice

rule of a, it does not tentatively accept any proposal from j in any step k > K . Since

M ∗ja > 0, we have limk→∞ F(Pj, a, M k) < limk→∞ F(R j, a, M k) = F(R j, a, M ∗). It fol-

lows that for some step k > K of the procedure, F(Pj, a, M k) < F(R j, a, M ∗). As the

sequence
󲷮

F(R j, a, M ℓ)
󲷯

is decreasing, F(Pj, a, M k) < F(R j, a, M k). Therefore, j’s pro-

posal
󲷨
F(Pj, a, M k), F(R j, a, M k)

󲷩
is in the choice set of a in step k, and a rejects this

proposal. Then, by Claim 1, F(R j, a, M k+1) = F(Pj, a, M k) < F(R j, a, M ∗), contradicting

to the fact that the decreasing sequence
󲷮

F(R j, a, M ℓ)
󲷯

converges to F(R j, a, M ∗).
Suppose that M ∗ is not ordinally fair. Then there exist i, j ∈ N and a ∈ A such

that i ∼a j, M ∗ia > 0 and F(Ri, a, M ∗) > F(R j, a, M ∗). Since limk→∞ F(R j, a, M k) <
F(Ri, a, M ∗) and F(R j, a, M1) = 1, by Claim 1, in some step K , agent j has a proposal󲷨
x , F(R j, a, M K)
󲷩

rejected by a and F(R j, a, M K+1) = x < F(Ri, a, M ∗). By the choice

rule of a, it does not tentatively accept any proposal [y, z] from i such that z > x , in any

step k > K . As in the above proof of ex-ante stability, M ∗ia > 0 implies that we can find

some step k > K of the procedure such that F(Pi, a, M k) < F(Ri, a, M ∗) ≤ F(Ri, a, M k).
Hence, i’s proposal

󲷨
F(Pi, a, M k), F(Ri, a, M k)

󲷩
is in the choice set of a in step k. Since

F(Ri, a, M k) ≥ F(Ri, a, M ∗) > x , i must have a proposal
󲷨

y, F(Ri, a, M k)
󲷩

rejected by a

in this step, and y ≤max
󲷮

x , F(Pi, a, M k)
󲷯
. Then, by Claim 1,

F(Ri, a, M k+1) = y ≤max
󲷮

x , F(Pi, a, M k)
󲷯
< F(Ri, a, M ∗).

This leads to a contradiction as
󲷮

F(Ri, a, M ℓ)
󲷯

is decreasing and converges to F(Ri, a, M ∗).
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Finally, we show that, for any ex-ante fair allocation M for p, M ∗Rsd
N M . Then it is

sufficient to show that M kRsd
N M for all k, and we prove this by induction. It is obvious

that M1Rsd
N M . Suppose that for some k ≥ 1, M kRsd

N M , but there exists i ∈ N such

that we do not have M k+1
i Rsd

i Mi. Then for some a ∈ A, F(Ri, a, M k+1) < F(Ri, a, M) ≤
F(Ri, a, M k). By Claim 1, in step k, agent i’s proposal

󲷨
F(Pi, a, M k), F(Ri, a, M k)

󲷩
is in

the choice set of object a and it rejects her proposal
󲷨
F(Ri, a, M k+1), F(Ri, a, M k)

󲷩
. Then

we have

F(Ri, a, M)> F(Ri, a, M k+1)≥ F(Pi, a, M k)≥ F(Pi, a, M).

It follows that

Mia = F(Ri, a, M)− F(Pi, a, M)> F(Ri, a, M k+1)− F(Pi, a, M k)≥ 0.

Consider the proposals tentatively accepted by a in step k. The sum of the measures

of these proposals is 1, as i has a proposal rejected. If i has a proposal tentatively

accepted by a in this step, then this proposal is
󲷨
F(Pi, a, M k), F(Ri, a, M k+1)

󲷩
. The above

inequality implies that the measure of this proposal is less than the probability that i

receives a under M . Therefore, there must exist some j ∈ N such that j has a proposal󲷨
F(Pj, a, M k), x
󲷩

tentatively accepted by a in step k, and

x − F(Pj, a, M k)> M ja = F(R j, a, M)− F(Pj, a, M). (1)

Since i has a proposal rejected by a in this step, by the choice rule of a, j ≽a i.

If j ≻a i, we have F(R j, a, M) = 1, since M is ex-ante stable and Mia > 0. Then,

given x ≤ 1, (1) implies that F(Pj, a, M k)< F(Pj, a, M), contradicting to M kRsd
N M . Next,

consider the case that j ∼a i. Since i’s proposal
󲷨
F(Ri, a, M k+1), F(Ri, a, M k)

󲷩
is rejected

by a in step k, by the choice rule of a, x ≤ F(Ri, a, M k+1). Hence,

x ≤ F(Ri, a, M k+1)< F(Ri, a, M)≤ F(R j, a, M), (2)

where the last inequality follows from Mia > 0 and the ordinal fairness of M . Then, (1)

and (2) imply that F(Pj, a, M k)< F(Pj, a, M), and a contradiction is reached.
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A.2 Proof of Lemma 1

Consider any i ∈ N and a ∈ A∪ {i}. First, since every M ∈ S is individually rational, for

each b ∈ A such that iPi b, (_S)i b = 0. Therefore, if iRia, then F(Ri, a, _S) = (_S)ii +󰁓
b∈A(_S)i b = 1 = sup {F(Ri, a, M) : M ∈ S}. Next, consider the case that aPi i. Let

A′ = {b ∈ A : bRia} and |A′|= k. If k = 1, then F(Ri, a, _S) = sup {F(Ri, a, M) : M ∈ S}.
Suppose that k > 1. We list the objects in A′ in the order of i’s preferences: let A′ =
{a1, . . . , ak} such that a1Pia2, . . . , ak−1Piak, where ak = a. Then,

F(Ri, ak, _S) =
k󰁛

ℓ=1

(_S)iaℓ

=
k󰁛

ℓ=1

󲷮
sup {F(Ri, aℓ, M) : M ∈ S}− sup {F(Pi, aℓ, M) : M ∈ S}

󲷯

= sup {F(Ri, a1, M) : M ∈ S}+
k󰁛

ℓ=2

󲷮
sup {F(Ri, aℓ, M) : M ∈ S}− sup {F(Ri, aℓ−1, M) : M ∈ S}

󲷯

= sup {F(Ri, ak, M) : M ∈ S}.

By similar arguments, it can be shown that F(Ri, a, ^S) = inf {F(Ri, a, M) : M ∈ S}.

A.3 Proof of Theorem 3

We prove the results in Theorem 3 in a particular order. The proof consists of nine

parts. We first show (iv) and (v), in Part 1 and Part 2, by similar techniques. In Part 3,

we show M _ M ′ ∈ 󲺔 . The first statement in the rural hospital theorem is also proved

along the way. Part 4 deals with the second statement in (i). Building on these results,

in Part 5, we show M ^ M ′ ∈ 󲺔 , and hence (󲺔 , Rsd
N ) is a lattice. Part 6 shows the lattice is

distributive, and Part 7 and Part 8 establish completeness. Finally, we show the second

statement in the rural hospital theorem in Part 9.

Part 1: two-sided efficiency.

Assume to the contrary, there exists some allocation M ′′ ∕= M such that M ′′Rsd
N M and

M ′′ ≽sd
A M . Let N ′ = {i ∈ N : Mi ∕= M ′′i }. Clearly N ′ ∕= 󲅭. For each i ∈ N ′, since M ′′i Rsd

i Mi

and M is individually rational, {a ∈ A : aPi i, M ′′ia > Mia} ∕= 󲅭. Define ai as the maximal

element in this set under Ri. Then M ′′ia = Mia for all a ∈ A such that aPiai.
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Now, consider any i ∈ N ′. Since F(Ri, ai, M) < F(Ri, ai, M ′′) ≤ 1 and M is ex-ante

stable, we have F(≽ai
, i, M) = 1. Then M ′′ai

≽sd
ai

Mai
implies F(≽ai

, i, M ′′) = 1 and

F(≻ai
, i, M ′′) ≥ F(≻ai

, i, M). Hence
󰁓

j∈N : j∼ai
i M ′′jai

≤
󰁓

j∈N : j∼ai
i M jai

. Since M ′′iai
> Miai

,

there exists some j ∈ N \ {i} such that j ∼ai
i and M ′′jai

< M jai
. Then j ∈ N ′ and a j Pjai.

As M is ordinally fair and M jai
> 0, we have

F(Ri, ai, M)≥ F(R j, ai, M)> F(R j, a j, M).

In sum, it has been shown that for any i ∈ N ′, there exists j ∈ N ′ such that F(Ri, ai, M)>
F(R j, a j, M). This leads to a contradiction as N ′ is finite.

Part 2: conflicting interests.

Suppose that MRsd
N M ′, but for some a ∈ A and i ∈ N , F(≽a, i, M) > F(≽a, i, M ′).

Then there exists j ∈ N such that j ≽a i and M ja > M ′ja. Since F(≽a, j, M ′) ≤ F(≽a

, i, M ′)< 1 and M ′ is ex-ante stable, F(R j, a, M ′) = 1. Then

F(Pj, a, M ′) = 1−M ′ja > 1−M ja ≥ 1−
󰁛

b∈A∪{ j}:aR j b

M j b = F(Pj, a, M).

This contradicts to M jR
sd
j M ′j .

To show the other direction, suppose that M ′ ≽sd
A M , but we do not have MRsd

N M ′.

Let N ′ = {i ∈ N : F(Ri, a, M ′) > F(Ri, a, M) for some a ∈ A such that aPi i}. Then, given

that M is individually rational, N ′ ∕= 󲅭. For each i ∈ N ′, define ai as the maximal object

in the set {a ∈ A : aPi i, F(Ri, a, M ′)> F(Ri, a, M)} under Ri.

Consider any i ∈ N ′. By the definition of ai, we have M ′iai
> Miai

. Since F(Ri, ai, M)<
1 and M is ex-ante stable, F(≽ai

, i, M) = 1. It follows from M ′ ≽sd
A M that F(≽ai

, i, M ′) =
1 and
󰁓

j∈N : j∼ai
i M ′jai

≤
󰁓

j∈N : j∼ai
i M jai

. Therefore, M ′iai
> Miai

implies the existence of

some j ∈ N \{i} such that j ∼ai
i and M ′jai

< M jai
. Since M ′ is ordinally fair and M ′iai

> 0,

F(R j, ai, M ′)≥ F(Ri, ai, M ′)> F(Ri, ai, M). (3)

Since M is ordinally fair and M jai
> 0,

F(Ri, ai, M)≥ F(R j, ai, M). (4)

Hence (3) and (4) imply F(R j, ai, M ′) > F(R j, ai, M). So j ∈ N ′. Since M ′jai
< M jai

,
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a j Pjai. Then by (4) and M jai
> 0,

F(Ri, ai, M)≥ F(R j, ai, M)> F(R j, a j, M).

In sum, we have shown that for any i ∈ N ′, there exists j ∈ N ′ such that F(Ri, ai, M) >
F(R j, a j, M), which leads to a contradiction since N ′ is finite.

Part 3: M _ M ′ ∈ 󲺔 , and the first part of rural hospital theorem.

Denote M̄ = M _ M ′. By the construction, M̄ia ≥ 0 for all i ∈ N and a ∈ A. Then

by Lemma 1, for any i ∈ N ,
󰁓

a∈A M̄ia = F(Pi, i, M̄) =max {F(Pi, i, M), F(Pi, i, M ′)}≤ 1.

Therefore, for M̄ to be a well-defined random allocation, it remains to show that the

probability shares of any object are not over-assigned.

Lemma 2. For any M1, M2 ∈ 󲺔 , i ∈ N and a ∈ A, if F(Ri, a, M1) ≥ F(Ri, a, M2), then

M1
ia ≥
󲷦
M1 _ M2
󲷧

ia
.

Proof of Lemma 2.

M1
ia = F(Ri, a, M1)− F(Pi, a, M1)

=max
󲷮

F(Ri, a, M1), F(Ri, a, M2)
󲷯
− F(Pi, a, M1)

≥max
󲷮

F(Ri, a, M1), F(Ri, a, M2)
󲷯
−max
󲷮

F(Pi, a, M1), F(Pi, a, M2)
󲷯

=
󲷦
M1 _ M2
󲷧

ia

Claim 2. For any a ∈ A, either M̄ia ≤ Mia for all i ∈ N, or M̄ia ≤ M ′ia for all i ∈ N.

Proof of Claim 2. Consider any a ∈ A. Let N(a) = {i ∈ N : M̄ia > 0}. If F(Ri, a, M) =
F(Ri, a, M ′) for all i ∈ N(a), then Claim 2 follows directly from Lemma 2. Now, suppose

that there exists i ∈ N(a) such that F(Ri, a, M) ∕= F(Ri, a, M ′). Without loss of generality,

let F(Ri, a, M)> F(Ri, a, M ′). Then by Lemma 2, Mia ≥ M̄ia > 0. Next, we want to show

that F(R j, a, M) ≥ F(R j, a, M ′) for all j ∈ N(a) \ {i}. Assume to the contrary, for some

j ∈ N(a), F(R j, a, M) < F(R j, a, M ′). Then by Lemma 2, M ′ja ≥ M̄ ja > 0. Since M

is ex-ante stable, Mia > 0 and F(R j, a, M) < F(R j, a, M ′) ≤ 1 imply i ≽a j. Similarly,

given that M ′ is ex-ante stable, M ′ja > 0 and F(Ri, a, M ′)< F(Ri, a, M)≤ 1 imply j ≽a i.

Hence, i ∼a j. Then we have

F(Ri, a, M ′)≥ F(R j, a, M ′)> F(R j, a, M)≥ F(Ri, a, M),
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where the first inequality follows from M ′ja > 0 and the ordinal fairness of M ′, and the

last inequality follows from Mia > 0 and the ordinal fairness of M . This contradicts to

the assumption that F(Ri, a, M) > F(Ri, a, M ′). Therefore, F(Rk, a, M) ≥ F(Rk, a, M ′)
for all k ∈ N(a). By Lemma 2, M̄ka ≤ Mka for all k ∈ N .

It follows immediately from Claim 2 that for every a ∈ A,
󰁓

i∈N M̄ia ≤ 1. So M̄ is a

well-defined random allocation. Next, we show that M̄ is ex-ante fair. Lemma 1 implies

that M̄ is individually rational. The non-wastefulness of M̄ can be deduced from the

following critical result by Erdil (2014).

Lemma 3 (Reshuffling Lemma). Let M1 and M2 be two random allocations. If M1 is

individually rational, non-wasteful and M2Rsd
N M1, then
󰁓

b∈A M1
i b =
󰁓

b∈A M2
i b for every

i ∈ N, and
󰁓

j∈N M1
ja =
󰁓

j∈N M2
ja for every a ∈ A.

If M̄ is wasteful, then there exist i ∈ N and a ∈ A such that F(Ri, a, M̄) < 1 and󰁓
j∈N M̄ ja < 1. As M̄Rsd

N M , F(Ri, a, M)< 1. Then, since M is non-wasteful,
󰁓

j∈N M ja =
1, contradicting to Lemma 3.

We pause the proof of the ex-ante fairness of M̄ and present two other important

implications of the Reshuffling Lemma.

• First, since M̄Rsd
N M , M̄Rsd

N M ′, and both M and M ′ are individually rational and

non-wasteful, Lemma 3 and Claim 2 together imply the following result.

Claim 3. For any a ∈ A, either M̄a = Ma or M̄a = M ′a.

• Second, for any i ∈ N and a ∈ A, by Lemma 3 we have

󰁛

b∈A

Mi b =
󰁛

b∈A

M̄i b =
󰁛

b∈A

M ′i b,

󰁛

j∈N

M ja =
󰁛

j∈N

M̄ ja =
󰁛

j∈N

M ′ja.

That is, we have shown the first part of the rural hospital theorem.

Now, suppose that M̄ is not ex-ante stable, then there exist i, j ∈ N and a ∈ A such that

i ≻a j, M̄ ja > 0 and F(Ri, a, M̄) < 1. Clearly, M ′′ja > 0 for some M ′′ ∈ {M , M ′}. But

M̄Rsd
N M ′′ implies F(Ri, a, M ′′) ≤ F(Ri, a, M̄) < 1, contradicting to the ex-ante stability

of M ′′. Finally, suppose that M̄ is not ordinally fair, then there exist i, j ∈ N and a ∈ A

such that i ∼a j, M̄ia > 0 and F(Ri, a, M̄) > F(R j, a, M̄). By Lemma 1, F(Ri, a, M̄) =
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max {F(Ri, a, M), F(Ri, a, M ′)}. Without loss of generality, let F(Ri, a, M̄) = F(Ri, a, M)≥
F(Ri, a, M ′). Then by Lemma 2, Mia ≥ M̄ia > 0. But we have

F(R j, a, M)≤ F(R j, a, M̄)< F(Ri, a, M̄) = F(Ri, a, M),

contradicting to the ordinal fairness of M . In sum, M̄ is ex-ante fair.

Part 4: for any i ∈ N, either MiRsd
i

M ′
i

or M ′
i
Rsd

i
Mi; for any a ∈ A, either Ma ≽sd

a M ′a
or M ′a ≽sd

a Ma.

First, consider any a ∈ A. By Claim 3, M̄a = Ma or M̄a = M ′a. Since M̄ is ex-ante fair,

M̄Rsd
N M , and M̄Rsd

N M ′, Part 2 (conflicting interests) implies that M ≽sd
A M̄ and M ′ ≽sd

A M̄ .

Therefore, M ′a ≽sd
a Ma if M̄a = Ma, and Ma ≽sd

a M ′a if M̄a = M ′a.

Second, assume to the contrary, for some i ∈ N , Mi and M ′i are not comparable

using the first-order stochastic dominance relation. Since M and M ′ are individu-

ally rational, there exist a, b ∈ A such that aPi i, bPi i, F(Ri, a, M) > F(Ri, a, M ′) and

F(Ri, b, M) < F(Ri, b, M ′). Without loss of generality, assume aPi b. Let c be the worst

object in {a′ ∈ A : a′Pi b, F(Ri, a′, M)> F(Ri, a′, M ′)}, and d the object next to c (and

worse than c) on i’s preference list. Then we have aRicPidRi b, F(Ri, c, M)> F(Ri, c, M ′)
and F(Ri, d, M)≤ F(Ri, d, M ′). Moreover,

M ′id = F(Ri, d, M ′)− F(Ri, c, M ′)

> F(Ri, d, M ′)− F(Ri, c, M)

=max
󲷮

F(Ri, d, M ′), F(Ri, d, M)
󲷯
−max
󲷮

F(Ri, c, M ′), F(Ri, c, M)
󲷯

= M̄id .

By Claim 3, M ′id > M̄id implies M̄d = Md . It follows from Part 2 (conflicting interests)

that M ′d ≽sd
d M̄d = Md . Since F(Ri, d, M) ≤ F(Ri, b, M) < F(Ri, b, M ′) ≤ 1 and M

is ex-ante stable, F(≽d , i, M) = 1. Therefore, F(≽d , i, M ′) = 1 and
󰁓

j∈N : j∼d i M ′jd ≤󰁓
j∈N : j∼d i M jd . Then M ′id > M̄id = Mid implies that there exists j ∈ N such that j ∼d i

and M ′jd < M jd , and we have

F(R j, d, M ′)≥ F(Ri, d, M ′)≥ F(Ri, d, M)≥ F(R j, d, M),

where the first inequality follows from M ′id > 0 and the ordinal fairness of M ′, and the

last inequality follows from M jd > 0 and the ordinal fairness of M . Since F(R j, d, M ′)≥
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F(R j, d, M), by Lemma 2, M̄ jd ≤ M ′jd < M jd . This is a contradiction since M̄d = Md .

Part 5: M ^ M ′ ∈ 󲺔 .

Denote M̂ = M ^ M ′. Let N ′ = {i ∈ N : M ′i R
sd
i Mi}. If i ∈ N ′, then M̄i = M ′i and

M̂i = Mi. By Part 4, if i ∈ N \ N ′, then M̄i = Mi and M̂i = M ′i . It follows that M̂ia ≥ 0

and
󰁓

b∈A M̂i b ≤ 1 for all i ∈ N and a ∈ A. For any a ∈ A, by the first part of the rural

hospital theorem,

󰁛

i∈N ′
Mia +
󰁛

i∈N\N ′
Mia =
󰁛

i∈N

Mia =
󰁛

i∈N

M̄ia =
󰁛

i∈N ′
M ′ia +
󰁛

i∈N\N ′
Mia.

Then 󰁛

i∈N ′
Mia =
󰁛

i∈N ′
M ′ia.

This implies that

󰁛

i∈N

M̂ia =
󰁛

i∈N ′
Mia +
󰁛

i∈N\N ′
M ′ia =
󰁛

i∈N ′
M ′ia +
󰁛

i∈N\N ′
M ′ia =
󰁛

i∈N

M ′ia ≤ 1.

That is, the probability shares of a are not over-assigned. So M̂ is a well-defined random

allocation. We show that it is ex-ante fair. First, M̂ is individually rational by Lemma

1. Second, suppose that for some a ∈ A,
󰁓

i∈N M̂ia < 1. It was shown above that󰁓
i∈N M ′ia =
󰁓

i∈N M̂ia. The first part of the rural hospital theorem further implies that󰁓
i∈N Mia =
󰁓

i∈N M ′ia =
󰁓

i∈N M̂ia < 1. Since M and M ′ are non-wasteful, for all i ∈ N ,

we have F(Ri, a, M) = F(Ri, a, M ′) = 1. It follows that F(Ri, a, M̂) = 1 for all i ∈ N , and

hence M̂ is non-wasteful.

Suppose that M̂ is not ex-ante stable. Then there exist i, j ∈ N and a ∈ A such that

i ≻a j, F(Ri, a, M̂) < 1 and M̂ ja > 0. Without loss of generality, assume M̂i = Mi. Since

M is ex-ante stable, F(≻a, j, M) = 1. In particular, M ja = 0. Then M ′ja = M̂ ja > 0 and

M jR
sd
j M ′j . It follows that M̄ ja = M ja ∕= M ′ja. By Claim 3, M̄a = Ma. Then, as M̄Rsd

N M ′,

Part 2 (conflicting interests) implies M ′a ≽sd
a Ma. However, this contradicts to the facts

that M ′ja > 0 and F(≻a, j, M) = 1.

Finally, suppose that M̂ is not ordinally fair. Then there exist i, j ∈ N and a ∈ A

such that i ∼a j, M̂ia > 0 and F(Ri, a, M̂) > F(R j, a, M̂). Without loss of generality, let

M̂i = Mi. Then by the ordinal fairness of M , M̂ j = M ′j . Since M ′i R
sd
i Mi,

F(Ri, a, M ′)≥ F(Ri, a, M) = F(Ri, a, M̂)> F(R j, a, M̂) = F(R j, a, M ′).
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By the ordinal fairness of M ′, M ′ia = 0. Given that M ′ia ∕= Mia and M̄ia = M ′ia, by Claim

3 we have M̄a = M ′a. Then Part 2 (conflicting interests) implies Ma ≽sd
a M ′a.

Since F(R j, a, M ′)< F(Ri, a, M)≤ 1, the ex-ante stability of M ′ implies F(≽a, j, M ′) =
1. Then F(≽a, j, M) = 1 and

󰁓
k∈N :k∼a j Mka ≤
󰁓

k∈N :k∼a j M ′ka. As Mia > M ′ia and i ∼a j,

there exists k ∈ N such that k ∼a j and Mka < M ′ka. Since M̄a = M ′a, we have M̄k = M ′k.

Hence M ′kRsd
k Mk. Then

F(Rk, a, M ′)≥ F(Rk, a, M)≥ F(Ri, a, M)> F(R j, a, M ′),

where the second inequality follows from the ordinal fairness of M and Mia > 0. How-

ever, given that M ′ka > 0, this contradicts to the ordinal fairness of M ′.

Part 6: distributivity.

Consider any M ′′ ∈ 󲺔 , and any i ∈ N . Given Part 4, without loss of generality,

assume MiR
sd
i M ′i . Then (M ′′^ (M _ M ′))i = (M ′′^ M)i. It also follows from MiR

sd
i M ′i

that (M ′′^ M)i Rsd
i (M

′′^ M ′)i. Therefore

󲷦
(M ′′^ M)_ (M ′′^ M ′)

󲷧
i
=
󲷦
M ′′^ M
󲷧

i
=
󲷦
M ′′^ (M _ M ′)

󲷧
i
.

That is, we have M ′′ ^ (M _ M ′) = (M ′′ ^ M)_ (M ′′ ^ M ′). By similar arguments, it

can be shown that M ′′_ (M ^ M ′) = (M ′′_ M)^ (M ′′_ M ′).

Part 7: _S ∈ 󲺔 .

First, given that any agent can compare the lotteries obtained under two ex-ante fair

allocations using the first-order stochastic dominance relation (Part 4), it is straightfor-

ward to see that for any M ′′ ∈ 󲺔 , and any non-empty and finite set S′ ⊆ 󲺔 such that

_S′ ∈ 󲺔 , we have _ {S′ ∪ {M ′′}} = _ {_S′, M ′′}. Therefore, by Part 3 and an induction

argument, for any non-empty and finite S′′ ⊆ 󲺔 , _S′′ ∈ 󲺔 .

Now, consider the set S ⊆ 󲺔 , which can be infinite. As in the case of M̄ , it can be

easily shown that for all i ∈ N and a ∈ A, (_S)ia ≥ 0 and
󰁓

b∈A(_S)i b ≤ 1. For _S to

be a well-defined random allocation, it remains to show that
󰁓

i∈N (_S)ia ≤ 1 for every

a ∈ A. Assume to the contrary,
󰁓

i∈N (_S)ia > 1 for some a ∈ A. For each i ∈ N , we can

find M(i) ∈ S such that

F(Ri, a, M(i))> sup
󲷮

F(Ri, a, M ′′) : M ′′ ∈ S
󲷯
− 1
|N |

󲹑󰁛

j∈N

(_S) ja − 1

󲹔
.
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Let S′ = {M(i) : i ∈ N} ⊆ S. Then for each i ∈ N ,

(_S′)ia =max
󲷮

F(Ri, a, M ′′) : M ′′ ∈ S′
󲷯
−max
󲷮

F(Pi, a, M ′′) : M ′′ ∈ S′
󲷯

≥ F(Ri, a, M(i))− sup
󲷮

F(Pi, a, M ′′) : M ′′ ∈ S
󲷯

> sup
󲷮

F(Ri, a, M ′′) : M ′′ ∈ S
󲷯
− 1
|N |

󲹑󰁛

j∈N

(_S) ja − 1

󲹔
− sup
󲷮

F(Pi, a, M ′′) : M ′′ ∈ S
󲷯

= (_S)ia −
1
|N |

󲹑󰁛

j∈N

(_S) ja − 1

󲹔
.

Summing over N , we have 󰁛

i∈N

(_S′)ia > 1.

A contradiction is reached, since S′ is finite and _S′ ∈ 󲺔 .

Next, we show that the allocation _S is ex-ante fair. First, the individual rationality

of _S follows from Lemma 1. As in the case of M̄ , the non-wastefulness of _S can be

deduced from the Reshuffling Lemma, since (_S)Rsd
N M , and M is individually rational

and non-wasteful. Second, suppose that _S is not ex-ante stable, then there exist i, j ∈
N and a ∈ A such that i ≻a j, (_S) ja > 0 and F(Ri, a, _S)< 1. Clearly M ′′ja > 0 for some

M ′′ ∈ S. But F(Ri, a, M ′′) ≤ F(Ri, a, _S) < 1, contradicting to the ex-ante stability of

M ′′. Finally, suppose that _S is not ordinally fair. Then there exist i, j ∈ N and a ∈ A

such that i ∼a j, (_S)ia > 0, and F(Ri, a, _S)> F(R j, a, _S). Pick some number x such

that

max
󲷮

F(R j, a, _S), F(Pi, a, _S)
󲷯
< x < F(Ri, a, _S).

Since F(Ri, a, _S) = sup {F(Ri, a, M ′′) : M ′′ ∈ S}, there exists M ′′ ∈ S such that

F(Ri, a, M ′′) > x . Then F(Ri, a, M ′′) > F(R j, a, _S) ≥ F(R j, a, M ′′). However, M ′′ia =
F(Ri, a, M ′′)− F(Pi, a, M ′′) > x − F(Pi, a, _S) > 0, contradicting to the ordinal fairness

of M ′′.

Part 8: ^S ∈ 󲺔 .

First, as in Part 7, it is easy to show that for any non-empty and finite S′ ⊆ 󲺔 ,

^S′ ∈ 󲺔 . It is also straightforward to see that for all i ∈ N and a ∈ A, (^S)ia ≥ 0 and󰁓
b∈A(^S)i b ≤ 1. Below, we show that the probability shares of any object are not over-

assigned in ^S, using arguments similar to those in Part 7. Assume to the contrary, for
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some a ∈ A,
󰁓

i∈N (^S)ia > 1. For each i ∈ N , there exists M1(i) ∈ S such that

F(Pi, a, M1(i))< inf
󲷮

F(Pi, a, M ′′) : M ′′ ∈ S
󲷯
+

1
|N |

󲹑󰁛

j∈N

(^S) ja − 1

󲹔
.

Define S1 =
󲷮

M1(i) : i ∈ N
󲷯
⊆ S. Then for each i ∈ N ,

(^S1)ia =min
󲷮

F(Ri, a, M ′′) : M ′′ ∈ S1
󲷯
−min
󲷮

F(Pi, a, M ′′) : M ′′ ∈ S1
󲷯

≥ inf
󲷮

F(Ri, a, M ′′) : M ′′ ∈ S
󲷯
− F(Pi, a, M1(i))

> inf
󲷮

F(Ri, a, M ′′) : M ′′ ∈ S
󲷯
−
󲸫

inf
󲷮

F(Pi, a, M ′′) : M ′′ ∈ S
󲷯
+

1
|N |

󲹑󰁛

j∈N

(^S) ja − 1

󲹔󲸵

= (^S)ia −
1
|N |

󲹑󰁛

j∈N

(^S) ja − 1

󲹔
.

Summing over N , we have 󰁛

i∈N

(^S1)ia > 1.

This contradicts to the fact that S1 is finite and ^S1 ∈ 󲺔 . Hence, ^S is a well-defined

random allocation. We show that it is ex-ante fair. First, the individual rationality

follows from Lemma 1. Second, to see non-wastefulness, consider any a ∈ A such that󰁓
i∈N (^S)ia < 1. For each i ∈ N , there exists M2(i) ∈ S such that

F(Ri, a, M2(i))< inf
󲷮

F(Ri, a, M ′′) : M ′′ ∈ S
󲷯
+

1
|N |

󲹑
1−
󰁛

j∈N

(^S) ja

󲹔
.

Let S2 =
󲷮

M2(i) : i ∈ N
󲷯
⊆ S. By similar arguments as above, it can be shown that󰁓

i∈N (^S2)ia < 1. Since S2 is finite, ^S2 ∈ 󲺔 . By the first part of the rural hospital

theorem, for every M ′′ ∈ 󲺔 ,
󰁓

i∈N M ′′ia =
󰁓

i∈N (^S2)ia < 1. Then for every M ′′ ∈ 󲺔 , by

non-wastefulness, F(Ri, a, M ′′) = 1 for all i ∈ N . It follows that F(Ri, a, ^S) = 1 for all

i ∈ N , and hence ^S is non-wasteful.

Third, suppose that ^S is not ex-ante stable. Then there exist i, j ∈ N and a ∈ A

such that i ≻a j, (^S) ja > 0 and F(Ri, a, ^S)< 1. Given that

inf {F(Ri, a, M ′′) : M ′′ ∈ S}< 1, and
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inf {F(Pj, a, M ′′) : M ′′ ∈ S}< inf {F(R j, a, M ′′) : M ′′ ∈ S},

we can find some M1, M2 ∈ S such that

F(Ri, a, M1)< 1, and F(Pj, a, M2)< inf {F(R j, a, M ′′) : M ′′ ∈ S}.

This implies that F(Ri, a, M1 ^ M2) < 1 and (M1 ^ M2) ja > 0, contradicting to the

ex-ante stability of M1 ^ M2.

Finally, suppose that ^S is not ordinally fair. Then there exist i, j ∈ N and a ∈ A

such that i ∼a j, (^S)ia > 0, and F(Ri, a, ^S)> F(R j, a, ^S). Since

inf {F(Pi, a, M ′′) : M ′′ ∈ S}< inf {F(Ri, a, M ′′) : M ′′ ∈ S}, and

inf {F(R j, a, M ′′) : M ′′ ∈ S}< inf {F(Ri, a, M ′′) : M ′′ ∈ S},

we can find M3, M4 ∈ S such that

F(Pi, a, M3)< inf {F(Ri, a, M ′′) : M ′′ ∈ S}, and

F(R j, a, M4)< inf {F(Ri, a, M ′′) : M ′′ ∈ S}.

It follows that (M3^M4)ia > 0 and F(R j, a, M3^M4)< F(Ri, a, M3^M4), contradicting

to the ordinal fairness of M3 ^ M4.

Part 9: the second part of rural hospital theorem.

We want to show that for all i ∈ N and a ∈ A, Mi = M ′i if
󰁓

b∈A Mi b < 1, and Ma = M ′a
if
󰁓

j∈N M ja < 1.

First, consider any a ∈ A such that
󰁓

i∈N Mia < 1. By Part 7, _󲺔 ∈ 󲺔 . To prove

that Ma = M ′a, it is sufficient to show that for any M ′′ ∈ 󲺔 , M ′′a = (_󲺔 )a. Assume

to the contrary, M ′′ ∈ 󲺔 and M ′′a ∕= (_󲺔 )a. By the first part of the rural hospital the-

orem,
󰁓

i∈N M ′′ia =
󰁓

i∈N (_󲺔 )ia < 1. So there exists i ∈ N such that M ′′ia < (_󲺔 )ia.

Moreover, as M ′′ and _󲺔 are non-wasteful, F(Ri, a, M ′′) = F(Ri, a, _󲺔 ) = 1. There-

fore, F(Pi, a, M ′′) = 1− M ′′ia > 1− (_󲺔 )ia = F(Pi, a, _󲺔 ), contradicting to the fact that

(_󲺔 )iRsd
i M ′′i .

Second, consider any i ∈ N such that
󰁓

a∈A Mia < 1. We show that for any M ′′ ∈ 󲺔 ,

M ′′i = (^󲺔 )i, where ^󲺔 ∈ 󲺔 by Part 8. Suppose that M ′′ ∈ 󲺔 and M ′′i ∕= (^󲺔 )i. Let

a be the worst object in the set {b ∈ A : M ′′i b ∕= (^󲺔 )i b}, according to Ri. Clearly, aPi i.
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By the first part of the rural hospital theorem,
󰁓

b∈A M ′′i b =
󰁓

b∈A(^󲺔 )i b < 1. It follows

that F(Ri, a, M ′′) = F(Ri, a, ^󲺔 ), since M ′′i b = (^󲺔 )i b for all b ∈ A such that aPi b. Then

M ′′i Rsd
i (^󲺔 )i implies that F(Pi, a, M ′′)≥ F(Pi, a, ^󲺔 ), and hence M ′′ia < (^󲺔 )ia.

Since F(Ri, a, M ′′) = F(Ri, a, ^󲺔 ) ≤
󰁓

b∈A(^󲺔 )i b < 1, by ex-ante stability we have

F(≽a, i, M ′′) = F(≽a, i, ^󲺔 ) = 1. By Part 2 (conflicting interests), (^󲺔 )a ≽sd
a M ′′a . Then

M ′′ia < (^󲺔 )ia implies that there exists some j ∈ N such that i ∼a j and M ′′ja > (^󲺔 ) ja.

Since M ′′j Rsd
j (^󲺔 ) j, F(Pj, a, M ′′) ≥ F(Pj, a, ^󲺔 ). Thus, F(R j, a, M ′′) > F(R j, a, ^󲺔 ), and

we have

F(Ri, a, M ′′)≥ F(R j, a, M ′′)> F(R j, a, ^󲺔 )≥ F(Ri, a, ^󲺔 ),

where the first inequality follows from the ordinal fairness of M ′′ and M ′′ja > 0, and

the last inequality follows from the ordinal fairness of ^󲺔 and (^󲺔 )ia > 0. This is a

contradiction since it was already shown that F(Ri, a, M ′′) = F(Ri, a, ^󲺔 ).

A.4 Proof of Proposition 1

Let p = (N , A, R,≽) ∈ 󲺟HA with |N | = |A| = n. Consider the allocation procedure in the

definition of EPS, which terminates in some step k̄. By construction, we have k̄ ≤ n,

and {λk}k̄k=1 is a sequence of positive numbers with
󰁓k̄

k=1λk = 1. For each k ∈ {1, . . . , k̄}
and i ∈ Nk, define k(i) ∈ {0, . . . , k − 1} such that i ∈ Nk(i), and i /∈ Nℓ if k(i) < ℓ < k,

where we set N0 = N . Then dk−1(i) = λk(i)+1 + . . .+λk−1 if dk−1(i)> 0.

Let q = (n!)n. We first use induction to show that λkq is an integer for every k ∈
{1, . . . , k̄}. Since λ1 = |E1|/|N1|, λ1 · n! is an integer. Assume that λk−1 · (n!)k−1 is an

integer, where 1< k ≤ k̄. Then

λk · (n!)k =
|Ek|−
󰁓

i∈Nk
dk−1(i)

|Nk|
· (n!)k

=
n!
|Nk|
·
󲷮
|Ek| · (n!)k−1 −
󰁛

i∈Nk

dk−1(i) · (n!)k−1
󲷯
,

which is an integer since for each i ∈ Nk with dk−1(i)> 0,

dk−1(i) · (n!)k−1 = λk(i)+1 · (n!)k−1 + . . .+λk−1 · (n!)k−1

is an integer. Given that k̄ ≤ n and q = (n!)n, λkq is an integer for all k ∈ {1, . . . , k̄}.
Next, we construct a deterministic allocation for pq based on EPS. Consider any
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k ∈ {1, . . . , k̄}. Define

Eq
k = {ax ∈ Aq : a ∈ Ek, x = 1, . . . , q},

and

N q
k =
󲷮

i x ∈ N q : i ∈ Nk,
k(i)󰁛

ℓ=0

λℓq+ 1≤ x ≤
k󰁛

ℓ=0

λℓq
󲷯
,

where λ0 = 0. Note that, since every λℓq is an integer, for each i ∈ Nk we have

󲷲󲷲{i x : i x ∈ N q
k }
󲷲󲷲=

k󰁛

ℓ=k(i)+1

λℓq = (dk−1(i) +λk)q. (5)

We argue that the objects Eq
k can be assigned to the agents N q

k such that each i x ∈ N q
k

receives some a y ∈ Eq
k with a ∈ Bi(Ak). If this is not true, then by Hall’s theorem, there

exists Ñ q
k ⊆ N q

k such that |Ñ q
k |> |BN ′(Ak)|q, where N ′ = {i ∈ Nk : i x ∈ Ñ q

k for some x}. It

follows that 󲷲󲷲{i x : i ∈ N ′, i x ∈ N q
k }
󲷲󲷲≥ |Ñ q

k |>
󲷲󲷲BN ′(Ak)
󲷲󲷲q.

Then by Equation 5,

󰁛

i∈N ′
(dk−1(i) +λk)q >

󲷲󲷲BN ′(Ak)
󲷲󲷲q

=⇒ λk >

󲷲󲷲BN ′(Ak)
󲷲󲷲−
󰁓

i∈N ′ dk−1(i)

|N ′| ,

which contradicts to the definition of λk.

Therefore, we can construct a deterministic allocation ϕ such that for each k ∈
{1, . . . , k̄} and i x ∈ N q

k , ϕ(i x) = a y ∈ Eq
k for some a ∈ Bi(Ak) and y . Then by Equation

5, under the allocation M(ϕ, pq), each i ∈ Nk is assigned the objects in Bi(Ak) with a

probability of dk−1(i) +λk. Therefore, M(ϕ, pq) ∈ f EPS(p).
To finish the proof, it remains to show that for anyσ ∈ 󲺞 (p, q) and µ ∈ f SD(σ, pq), ϕ

and µ are welfare equivalent.16 Assume to the contrary, ϕ and µ are not welfare equiv-

alent. Let i x be the first agent in N q who is not indifferent between ϕ and µ. That is,

we do not have µ(i x) Iq
i ϕ(i

x). Moreover, µ( j y) Iq
jϕ( j

y) for any j y ∈ N q with σ−1( j y)<

16Specifically, it is easy to see that when ϕ and µ are welfare equivalent, M(ϕ, pq) and M(µ, pq) are
welfare equivalent. Then it can be shown that the ordinal fairness of M(ϕ, pq) implies M(µ, pq) is also
ordinally fair, and hence M(µ, pq) ∈ f EPS(p).
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σ−1(i x). It follows from the definition of serial dictatorships thatµ(i x) Pq
i ϕ(i

x). Suppose

that µ(i x) = a y and i x ∈ N q
k . Then aPi b for any b ∈ Bi(Ak). Note that, if k(i) < ℓ < k,

then i /∈ Nℓ, and we have Bi(Aℓ) \ Eℓ ∕= 󲅭, since otherwise

|BNℓ∪{i}(Aℓ)|−
󰁓

j∈Nℓ∪{i} dℓ−1( j)

|Nℓ ∪ {i}|
=
|Eℓ|−
󰁓

j∈Nℓ∪{i} dℓ−1( j)

|Nℓ ∪ {i}|
< λℓ.

Therefore, Bi(Aℓ+1) ⊆ Bi(Aℓ). It follows that for any ℓ with k(i) < ℓ ≤ k, we have

aPi b for any b ∈ Bi(Aℓ), and hence a /∈ Aℓ. This implies a ∈ Ek′ for some k′ such that

1≤ k′ ≤ k(i).
By the construction, all the objects ∪k(i)

ℓ=1Eq
ℓ

are assigned to the agents ∪k(i)
ℓ=1N q

ℓ
under

ϕ. In addition, x > z for any jz ∈ ∪k(i)
ℓ=1N q

ℓ
, and i x /∈ ∪k(i)

ℓ=1N q
ℓ
. Then, µ(i x) = a y ∈ Eq

k′ ⊆
∪k(i)
ℓ=1Eq

ℓ
implies the existence of some jz ∈ ∪k(i)

ℓ=1N q
ℓ

such that µ( jz) /∈ ∪k(i)
ℓ=1Eq

ℓ
. Let jz ∈ N q

k′′ ,

where 1 ≤ k′′ ≤ k(i), and µ( jz) = bw. Then b /∈ Eℓ for any ℓ ∈ {1, . . . , k(i)}. This first

implies b ∈ Ak′′ . However, since x > z and σ−1( jz) < σ−1(i x), we have µ( jz) Iq
jϕ( j

z),
and hence b ∈ B j(Ak′′) ⊆ Ek′′ , which leads to a contradiction.
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