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Abstract

A principal incentivizes an agent to maintain compliance and to truthfully

announce any breaches of compliance. Compliance is imperfectly controlled

by the agent’s private effort choices, is partially persistent, and is verifiable

by the principal only through costly inspections. We show that in principal-

optimal equilibria, the principal enforces maximum compliance using deter-

ministic inspections. Periodic inspection cycles are suspended during periods

of self-reported noncompliance, during which the agent is fined. We show how

commitment to random inspections would benefit the principal, and discuss

possible ways for the principal to overcome her commitment problem.
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1 Introduction

In 2018 and 2019 two plane crashes killed 346 people and led to a worldwide grounding of

the Boeing 737 MAX.1 An investigation by the U.S. Congress concluded that the accidents

were to a large extent due to “grossly insufficient oversight by the FAA.”2 Starting from

the early 2000s, the FAA had increasingly trusted manufacturers to certify their own planes

to save costs. By 2018, Boeing had self-certified nearly all of its work (Kitroeff et al.,

2019). Boeing rushed the development of the 737 MAX at the expense of safety. This case

illustrates the risk in relying on self-reported quality assurances without sufficient oversight.

In this paper we study enforcement relationships in which the agent privately controls

and observes the state of compliance and makes reports to a principal without commitment

power. Compliance is partially persistent over time and can be observed by the principal

only through costly inspections. The principal schedules inspections and imposes fines to

incentivize the agent to exert effort and self-report instances of noncompliance. We show

that the principal can induce the agent to exert full effort and report truthfully at all times

through relational incentives. The principal carries out inspections despite knowing the

result beforehand. Our analysis highlights the importance of the persistent effect of effort.

Further, the principal cannot gain from randomized inspections when she lacks commitment,

but random inspections would be optimal with commitment.

Public-sector applications of our model include banking supervision to ensure that banks

maintain functioning internal risk assessments3 and environmental protection where the cor-

responding government agency ensures the enforcement of regulation by firms.4 Similarly,

private-sector organizations must ensure internally that employees follow regulation.5

We consider principal-optimal equilibria in which the agent truthfully discloses all in-

stances of noncompliance and exerts maximum effort throughout. The principal-optimal

1As a result, Boeing suffered an operational loss of over $20 billion. The estimated impact on the
U.S. economy as a whole was a 0.4 percentage points loss in GDP growth (di Giovanni et al., 2020).

2See U.S. House of Representatives (2020).
3See Section 5 for a brief discussion of banking supervision practices in Germany.
4For the US, Blundell et al. (2020) measure the benefits of dynamic procedures used by the EPA.
5For instance, European Commission (2019) supports exporting firms in elaborating Internal

Compliance Programs(ICP) to “mitigate risks associated with dual-use trade controls and to en-
sure compliance” internally. Dual-use goods have civil and military applications and fall under
special regulation to promote international security, e.g., by “countering risks associated with the
proliferation of Weapons of Mass Destruction” (European Commission, 2019, p. 17).
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equilibrium we derive in our main result (Theorem 1) entails two phases: a monitoring phase

and a penalty phase. The agent is in the monitoring phase when he reports compliance.

During the monitoring phase, the agent is not fined but subject to periodic inspections

which would result in the maximal possible fine in the off-path event that the inspection re-

vealed misreporting. The agent is in the penalty phase when he reports noncompliance. He

pays a constant flow fine but is never inspected. He also pays a lump sum fine each time the

state transitions from compliance to noncompliance. Crucially, this transition fine features

penalty reductions for early disclosures of noncompliance, an aspect that is consistent with

voluntary disclosure schemes commonly used in practice. The penalty reduction prevents

the agent from delaying a report of an incidence of noncompliance in the hope that he can

regain compliance before the next inspection.6

Notably, inspection times in this equilibrium are entirely predictable for the agent which

implies that the principal cannot gain from randomized inspections. Intuitively, the prin-

cipal’s motive to inspect is derived from her desire to maintain a reputation for vigilance.7

Predictable inspections provide the strongest incentive for the principal to inspect. As long

as the principal inspects as prescribed by her equilibrium strategy, the agent continues to

expect to be monitored and thus has an incentive to exert effort and report truthfully.

However, when the principal delays inspections in a way that is detectable by the agent,

then the agent will infer that the principal has become non-vigilant. This in turn induces

the agent to shirk which ultimately leads to a breakdown of the relationship that is costly

for the principal. If the principal uses a random strategy and mixtures are unobservable for

the agent, deviations by the principal are harder to detect for the agent. This destroys any

potential benefit for the principal in equilibrium.

We exploit the optimality of predictable inspection schedules for the construction of

the principal-optimal equilibrium in Theorem 1: her equilibrium payoffs coincide with the

6Blundell et al. (2020) point out that, when determining the gravity of fines, the EPA takes into
account whether a violation was self-reported or not. See also Kapon (2022) who studies optimal
design of fine reductions (amnesties) granted for self-reports of illegal activity when detections arrive
at an exogenous rate. Focusing on deterministic fine reduction paths, Kapon (2022) also finds a
cyclical structure of the optimal mechanism.

7Here, maintaining a reputation means following equilibrium actions because deviating leads to
a less favorable continuation value (see Ch.22 in Ljungqvist and Sargent, 2018). This “history-
dependence” notion of reputation is distinct from the “adverse-selection” approach to reputation
(Mailath and Samuelson, 2006, p. 459), in which incentives stem from the desire to convince the
opponent that you are of a specific type.
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value of an auxiliary mechanism-design problem in which the principal is restricted to non-

random inspections. We then transform this optimization into a dynamic programming

problem which uses the agent’s promised utility as state variable.

Comparative statics reveal the importance of persistence for relational enforcement. In

equilibrium, the persistent effect of effort on compliance allows the principal to deter the

agent from deviating through isolated inspections. As the state’s persistence vanishes, the

inspection costs necessary to enforce compliance grow arbitrarily large.

We then contrast the relational enforcement equilibrium with stochastic inspection

mechanisms. The ability to commit to random inspections decreases the principal’s inspec-

tion costs relative to the deterministic inspections that are required in the non-commitment

case. Deterministic inspections are more costly because of delay and noise in the compli-

ance process, and due to the transition penalties that are needed to generate incentives for

voluntary disclosure. Comparative statics highlight the contrast between relational enforce-

ment and the commitment case with random inspections. As the persistence of the state of

compliance vanishes, the random inspection costs decrease monotonically. We also discuss

ways of overcoming the principal’s commitment problem, including institutional separation

of planning and execution of oversight and inspection sampling combined with publicly

accessible and verifiable records.

The rest of the paper is organized as follows. After discussing related literature, the

model setup is presented in Section 2. Section 3 characterizes the agent’s incentive con-

straints, shows that the principal-optimal equilibrium can be determined by solving an

auxiliary mechanism-design problem, and outlines how to solve the auxiliary problem. We

present the principal-optimal equilibrium in Section 4, followed by comparative statics.

Section 5 discusses random inspections. All proofs are contained in the appendix.

Related literature. Our paper is closely related to the literature on costly state verifica-

tion (CSV). Early papers, including Townsend (1979), Gale and Hellwig (1985), Mookherjee

and Png (1989), and Border and Sobel (1987), focus on one-shot interactions. One of the

main findings in this literature is the optimality of cut-off verification protocols, an insight

that has been influential in explaining the use of debt contracts and the role of financial

intermediaries. A number of papers consider dynamic extensions. In many of these, the

principal’s observation reveals the agent’s current private information with no intertemporal
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link to past actions or states.8 By contrast, the state in our model is partially persistent,

so inspections reveal information about past behavior.

Inspections of a persistent state are analyzed in Ravikumar and Zhang (2012) and

Kim (2015). These papers study pure adverse-selection problems with exogenous private

information when the principal has commitment. In Ravikumar and Zhang (2012), the

contracting friction is driven by risk-sharing concerns. They find that random inspections

are optimal, and, after each inspection, there is a grace period without inspections. In Kim

(2015), the contracting friction is driven by the agent’s limited liability. They find that ran-

dom inspections are optimal for incentive provision when truthful disclosure is attainable,

but periodic inspections are optimal to guide environmental protection activities when the

fines are insufficient to attain truthtelling. Our setting features an adverse-selection and

moral-hazard problem, the principal lacks commitment power, and the agent is risk neutral

so that the contracting friction stems from limited liability. We find deterministic inspec-

tions are optimal when the principals lacks commitment. Our result for the commitment

case is in line with their findings that random inspections provide incentives more effectively.

Most closely related is the paper by Varas et al. (2020), which studies a pure moral-

hazard model with full commitment and without fines.9 In their model, the agent is in-

centivized by the desire maintain a good reputation and inspections make the agent’s type

public. Additionally, inspections serve an information-acquisition purpose for the principal.

The authors find random inspections are optimal for incentive provision, but deterministic

inspections are optimal for information acquisition. In contrast, in our model, the agent

discloses the state of compliance, so that inspections do not reduce the uncertainty about

8For dynamic moral-hazard problems in which monitoring reveals the current action, see Antinolfi
and Carli (2015); Piskorski and Westerfield (2016); Dilmé and Garrett (2019); Chen et al. (2020); Li
and Yang (2020); Dai et al. (2022); Wong (2022). For dynamic adverse-selection problems in which
verification reveals the agent’s current information which i.i.d. across periods, see Chang (1990);
Webb (1992); Monnet and Quintin (2005); Wang (2005); Popov (2016); Malenko (2019).

9In both papers, state transitions are based on the reputation for quality model (Board and
Meyer-ter-Vehn, 2013). In Board and Meyer-ter-Vehn (2013) quality becomes publicly observable
at random times. In the present paper and in Varas et al. (2020), the principal chooses the times
at which the state becomes publicly observable at a cost. In Halac and Prat (2016) and Dilmé
and Garrett (2019), the principal invests in building her persistent monitoring capabilities, and
monitoring reveals information about current actions of the agents. In contrast to the setup in the
present paper, the principal’s actions are private and she cannot perfectly control the time at which
she signals vigilance. In Halac and Prat (2016) this leads to a breakdown of the relationship with
positive probability after the agent’s effort remains unrecognized for too long.
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the state. Ball and Knoepfle (2023) study optimal inspections with commitment and show

that random inspections are optimal for incentives when the agent must avoid a breakdown

and deterministic inspections are optimal when the agent must achieve a breakthrough.

The driver of non-random inspections in our paper is the principal’s lack of commitment.

The persistent effect of effort is important for relational incentives. This is also high-

lighted for a collaboration problem without commitment in Ramos and Sadzik (2023). Sim-

ilar to our comparative statics in Section 4.2, the authors show that relational incentives

vanish without persistence. Without persistence, commitment is crucial for enforcement

with costly inspections: when the agent is expected to comply, the principal has no incentive

to pay the inspection cost to reveal information she already knows. Indeed, Reinganum and

Wilde (1985) confirms for a non-repeated setting that compliance is not achievable without

full commitment. With repeated interactions, continuation play can provide punishment for

insufficient inspection. Ben-Porath and Kahneman (2003) prove a folk-theorem, showing

that full compliance can be obtained without commitment in the undiscounted limit. In

our game, full compliance is attainable even with discounting. This difference stems from

the persistence of the state and the observability of inspections by the agent in our model.

2 Model

Players, actions, and state dynamics. There are an agent and a principal. Time

t ∈ [0,∞) is continuous. The agent, at each instant t, privately chooses effort ηt ∈ [0, 1] to

comply with exogenously given regulation as best he can. The state of compliance at time t

is θt ∈ {0, 1}, where we refer to state 0 as non-compliant and 1 as compliant. Effort affects

the transitions of the process {θt}t≥0: there are parameters λ > 0 and α ∈ (0, 1) such that

the state changes from 0 to 1 at Poisson rate ηtλα, and from 1 to 0 at rate λ(1 − ηtα).

We may interpret λ and α as follows. There is a Poisson process of shocks arriving at rate

λ. Whenever there is a shock at time t, the resulting state is θt = 1 with probability ηtα

and it is θt = 0 with probability 1 − ηtα; between shocks the state remains unchanged.

Thus, λ measures the variability of compliance and α measures the responsiveness to the

agent’s effort conditional on a shock, α < 1 implies that the agent cannot always maintain

compliance despite his best efforts. The agent observes θt at all times and sends report

θ̂t ∈ {0, 1} to the principal. The agent can exit the relationship unilaterally at any time.
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The principal chooses inspections and fines to incentivize the agent. We denote by N I
t

the cumulative number of inspections and by Ft the cumulative fines up to and including

time t. That is dN I
t ≡ Nt − lims↗tN I

s ∈ {0, 1} is equal to 1 iff there is an inspection at

time t and dFt ≥ 0 is the fine paid by the agent at time t.

Information and timing. The agent observes the history of all paths

ht = {ηs, θs, θ̂s, N I
s , Fs}s∈[0,t].

The principal never observes the agent’s effort and is able to observe the state θt only by

performing an inspection at time t. To allow for randomized inspections, we equip the

principal with a private random signal π, defined on a sufficiently rich sample space Π. The

principal observes histories of the form hPt = {π, θ̂s, N I
s , Fs, θs : N I

s = 1}s∈[0,t]. Heuristically,

we can describe the timing of events within each instant [t, t + dt) is as follows.10 First,

the agent chooses effort ηt. Subsequently, nature determines whether a shock arrives and,

conditional on the arrival of a shock and the effort, draws a new state θt. The agent then

observes the realized θt and sends a report θ̂t ∈ {0, 1} to the principal. The principal chooses

whether to inspect, dN I
t ∈ {0, 1}, and sets a fine dFt incurred immediately by the agent,

where the fine can be contingent on the true state θt if and only if the principal chose to

inspect.

Payoffs and equilibrium. The principal and the agent are risk-neutral and discount

future payoffs at a common rate r > 0. The principal is tasked with ensuring that the agent

complies with the regulation. She incurs a lump-sum cost κ > 0 from each inspection. For a

realized history h = {ηt, θt, θ̂t, N I
t , Ft}t∈[0,∞) the discounted net present cost of the principal

at time t is

kt =

∫ ∞
t

e−r(s−t)κdN I
s .(1)

10We outline the sequentiality at a given instant to give intuition about the order of moves.
Formally, the order is captured by continuity properties of the respective action and state paths. It
is well-known that in continuous-time games with observable actions, strategies may not produce
well-defined action paths. To focus the exposition in the main text on the main economic forces, we
defer a more formal treatment to Online Appendix ON-A, where we adopt an approach by Kamada
and Rao (2023) to impose restrictions on strategies which guarantee well-defined action paths.

6



The principal does not benefit directly from compliance nor from fining the agent. Fines

are interpreted as remedial actions that negatively impact the agent.11 To ensure that the

principal is willing to bear the inspections costs, assume that, when the relationship breaks

down, i.e. the agent exits or ceases to exert effort, the principal suffers cost K̄. We assume

throughout that the bound K̄ is large enough such that it exceeds the expected inspection

costs necessary to incentivize the agent.12

The agent incurs effort cost of cηt dt with c > 0 and disutility dFt from fines. His

discounted net present payoff at time t is given by

ut =

∫ ∞
t

e−r(s−t) (−cηs ds− dFs) .(2)

The agent is protected by limited liability. If he chooses to exit, the relationship ends

permanently, which results in a continuation payoff of −B. This implies a constraint on the

severity of fines the principal can impose. We assume that the exogenously given bound B is

large enough: B > B̄ ≡ c(r + λ)/(λαr). Otherwise, the maximal punishment is insufficient

to incentivize effort even if θt were public at all times.

Given a strategy profile, the principal and the agent form expectations about history h

based on their past observations. For strategies that induce measurable action processes on

path, we denote the expected cost of the principal and payoff of the agent at time t by

Kt = EPt−[kt] and Ut = EAt−[ut].

The expectation is with respect to the process {θs}s∈[0,∞) and the randomization device π,

and it is conditional on the information that is available to the principal and the agent, re-

spectively.13 In continuous-time games with observable actions and stochastic environments,

11Our results do not rely on this assumption. When the principal benefits from fines, her preferred
equilibrium differs from the one we present only in an initial fine paid by the agent (see Section 6).

12This serves as a concise way to deliver incentives for inspection for the principal when analyzing
the equilibrium problem without commitment. Alternatively, we could explicitly incorporate an
(unobserved) flow reward θtR or ηtR in our model so that, for R > 0 large enough, the principal’s
expected payoff from inducing effort by the agent exceeds the necessary inspection costs. Our results
would be unaffected.

13For the principal, the expectation is with respect to the natural filtration generated by the
process {N I

s , Fs, θs : dNs = 1}s∈[0,t) ∪ {θ̂s}s∈[0,t] when taking her inspection decision, and with

respect to the natural filtration generated by {θ̂s, N I
s , Fs−, θs : dNs = 1}s∈[0,t] for the fine.

For the agent, the expectation is with respect to the natural filtration generated by the process
{ηs, θs, θ̂s, N I

s , Fs}s∈[0,t) for his effort choice, and with respect to the natural filtration generated by
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players’ behavior may be non-measurable. We do not impose restrictions on strategies that

rule out non-measurable behavior. Instead, our equilibrium definition below requires that

strategies lead to measurable actions on path. Histories away from the equilibrium path may

lead to non-measurability. Payoffs at such histories can be assigned freely within the feasible

bounds. In our game, the lower bounds on payoffs can be reached by either player unilater-

ally through exit or by imposing the maximal fine. Therefore, potential non-measurabilities

off path and the assigned payoffs cannot be used as a threat to enlarge the equilibrium set

(see also the discussion of this approach in Kamada and Rao, 2023).

We define a strategy profile, together with processes {Kt, Ut}t≥0, to be a perfect Bayesian

equilibrium if the following hold.

1. The strategies of the principal and the agent are sequentially rational.

2. Along the equilibrium path, Kt and Ut are equal to the conditional expectations

given above. Away from the equilibrium path, Kt and Ut are equal to the conditional

expectations whenever these are well-defined.

3. At all histories and all times Kt ∈ [0, K̄] and Ut ∈ [−B, 0].

We say that the agent’s strategy is truthful if θ̂t = θt at all histories along the equilibrium

path. Further, we call the agent’s strategy maximally compliant if ηt = 1 at all histories

along the equilibrium path. Note that with full effort by the agent, the probability of

compliance at any given time is maximized. We refer to an equilibrium as truthful or

maximally compliant if the agent’s strategy in this equilibrium has the respective property.

Henceforth, we restrict attention to such equilibria (see discussion in Section 6).

We say that inspections are predictable for the agent if he knows for certain whether or

not his current report will lead to an inspection at any history.14 Henceforth, we refer to

inspections as random whenever they are non-predictable for the agent.

{θ̂s, N I
s , Fs}s∈[0,t) ∪ {ηs, θs}s∈[0,t] for his report. As mentioned above, see Online Appendix ON-A

for a formal treatment of permissible strategies.
14Formally, predictability means that the process N I is measurable with respect to the information

available to the agent (see Davis, 1993, p. 67, for a definition in the context of jump processes).
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3 Agent and principal’s problem

3.1 Agent: incentive compatibility

Fix an arbitrary principal strategy of fines and inspections and let Ut be the agent’s as-

sociated expected discounted continuation payoff at time t under the assumption that he

exerts full effort and reports truthfully. We characterize recursively under what conditions

truthful reporting and maximal compliance is a best response for the agent in terms of the

evolution of his promised utility at all times. Due to the persistence in the agent’s private

information, the recursive characterization of incentive compatibility requires tracking two

state variables:15 the agent’s expected continuation utility given that θt = 0 and given that

θt = 1. Formally, fix a principal-strategy and define for any strict history at time t,

U0
t = EAt−[Ut|θt = 0] and U1

t = EAt−[Ut|θt = 1].(3)

These are the agent’s expected continuation utilities when history ht− is followed by the

realization of θt = 0 or θt = 1. Here, EAt− represents the expectation conditional on all

available information before time t. Following Zhang (2009), we call U1
t the persistent

payoff if θt− = 1, and the transitional payoff in case θt− = 0, and vice versa for U0
t .

Our first result provides a complete characterization of the agent’s incentive-compatibility

constraints in terms of the evolutions of U0
t and U1

t . The construction is based on the martin-

gale representation for marked point processes (Last and Brandt, 1995), which is presented

in detail in Appendix A. We exploit the fact that the agent’s time-t expectation of his

total discounted lifetime utility is a martingale. For the inspection counting process N I ,

the compensator is a predictable process νI = {νIt }t≥0 such that the compensated process

N I
t − νIt is a martingale. The compensator exists under very general conditions and can be

interpreted as the predictable drift of the underlying (non-predictable) stochastic process.

We can think of the compensator as a generalization of the cumulative hazard function,

and consequently of dνI/dt as the hazard rate of inspections (whenever it exists). Further,

let the predictable process ∆I =
{

∆I
t

}
t≥0 measure the jump in the persistent payoff if an

inspection is performed at time t.16

15This is based on Fernandes and Phelan (2000), who introduce a recursive approach with serially
correlated states in discrete time. See Zhang (2009) for a treatment in continuous time.

16That is, given an inspection occurs at time t (and θt− = 1), then ∆I
t = U1

t −U1
t−. Supposing that
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Lemma 1. A principal’s strategy induces maximal compliance and truthful reporting if and

only it generates the processes {U1
t , U

0
t }t≥0 of promised utilities satisfying for i = θt− and

j = 1− θt− and at all t with dN I
t = 0 and θt− = θt:

(Pk) dU it = rU it dt+ λ(i− α)(U1
t − U0

t ) dt+ cdt+ dFt −∆I
t dνIt ,

(H) dU jt ≤ rU jt dt+ λ(j − α)(U1
t − U0

t ) dt+ cdt+ dFt + (B + U jt ) dνIt ,

(O) U1
t − U0

t ≥ c/λα,

(P ) U0
t , U

1
t ∈ [−B, 0],

We now explain the role of the four constraints: promise keeping (Pk), honesty (H),

obedience (O), and participation (P ).

First, the promise-keeping constraint (Pk) ensures that the agent’s expectation of his

discounted lifetime utility is indeed a martingale, so that U
θt−
t represents the continuation

utilities consistently. For illustration, suppose θt− = 1 and rearrange (Pk) for i = 1:

rU1
t dt = −cdt− dFt + λ(1− α)

(
U0
t − U1

t

)
dt+ dνIt ∆I

t + dU1
t .

This formulation has the familiar asset price interpretation where the return rU1
t is equal to

the current flow payoff (dividends) plus expected capital gains. The agent incurs flow cost

cdt from effort ηt = 1 and suffers the fine dFt. With full effort, there is a transition from

state 1 to 0 with probability λ(1− α) dt at which the agent’s payoff changes by (U0
t −U1

t ),

an inspection arrives with probability dνIt and changes the agent’s payoff by ∆I
t , and dU1

t

is the change in the current payoff if no transition or inspection arrives.

Second, the honesty constraint (H) makes sure that the agent truthfully reports any

state transitions immediately.17 For a heuristic illustration, suppose again that i = θt− = 1

and consider the agent’s reporting incentives when a transition to state 0 occurs at time t.

For exposition, assume also that the inspection distribution has no mass point at time t,

and the density is ν̃It = limdt→0 dνIt /dt. The agent is willing to report the decline without

delay only if he cannot gain from misreporting θ̂ = 1 for a small interval [t, t + dt) and

reverting to truthtelling afterwards. Using a first-order Taylor approximation we must have

U0
t ≥ −cdt− dFt + λαU1

t dt+ ν̃It dt(−B) + (1− λα dt− ν̃It dt)(1− r dt)U0
t+dt.

the inspection confirms that the agent reported truthfully —which is the case along the equilibrium
path.

17This corresponds to the threat-keeping constraint in Fernandes and Phelan (2000).
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On the left-hand side we have the value from reporting truthfully. On the right-hand

side, the agent incurs cdt and dFt. With probability λα dt the state changes back from

0 to 1 and the agent gets U1
t . With probability ν̃It dt the agent is inspected and caught

misreporting; by standard arguments, it is optimal for the principal to enforce the most

severe punishment. This leaves the agent a payoff equal to his outside option −B. With

probability (1−λα dt− ν̃I t dt) the state remains 0 and there is no inspection, in which case

agent gets the discounted payoff (1−r dt)U0
t+dt from reporting state 0 (truthfully) at t+dt.

Substituting the approximation dU0
t := U0

t+dt − U0
t and ignoring higher-order terms, this

necessary condition is equivalent to

dU0
t ≤ rU0

t dt− λα(U1
t − U0

t ) dt+ cdt+ dFt + ν̃It dt(B + U0
t ).

This inequality is precisely condition (H) for the case i= 1 and j = 0 when dνIt = ν̃It dt.

By ensuring that the transitional utility U jt decreases quickly enough, the agent is deterred

from delaying the report of any transition. While the heuristic derivation above generates

a necessary condition, the general result in Lemma 1 is also sufficient, and covers the

possibility of inspections with positive probability mass.

Third, the obedience constraint (O) ensures that ηt = 1 is a best response for the agent.

The marginal cost of effort is c. The marginal benefit is λα(U1
t −U0

t ), where λ is the arrival

rate of a shock, α is the sensitivity of the realization to the agent’s effort, and U1
t − U0

t is

the utility gain from the high state.

Fourth and finally, the participation constraint (P ) makes sure that the agent’s payoff

is not below −B so he does not withdraw from the contract. As the agent only incurs costs

from effort and fines only payoffs below 0 are feasible.

3.2 Principal: sequential rationality and predictability

A principal-optimal equilibrium can be characterized by solving an auxiliary mechanism-

design problem in which the principal minimizes her inspection costs over all strategies with

non-random inspections subject to the IC conditions in Lemma 1.

Lemma 2. Let {N I∗
t , F

∗
t }t≥0 be a solution to the auxiliary mechanism-design problem

min
{NI

t ,Ft}t≥0

EP
[∫ ∞

0
e−rtκdN I

t

]
,
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subject to the requirements that (i) the corresponding utility paths
{
U1
t , U

0
t

}
t≥0 satisfy

incentive-compatibility conditions (Pk), (H), (O), (P ) in Lemma 1 and (ii) {N I
t }t is pre-

dictable whenever the agent reports compliance. Then {N I∗
t , F

∗
t }t≥0 describes the principal’s

strategy on the path of a principal-optimal truthful and maximally compliant equilibrium.

The result requires that inspections are predictable only during compliance which is

sufficient here, as it is never optimal to inspect when the agent admits noncompliance.

Lemma 2 is the result of two essential insights. First, the minimal costs for the principal

in Lemma 2 cannot exceed the principal’s optimal equilibrium costs. That is, in equilibrium

she cannot gain from any randomness in the timing of inspections. To prove this first insight,

we exploit that in any equilibrium in which an inspection arrives at random, the principal

must be indifferent between all times in the support of the inspection-time distribution.18

By replacing a random inspection with a deterministic inspection time in the support, any

equilibrium strategy can be transformed into a predictable strategy that generates the same

expected costs. We show that this can be achieved while preserving incentives for the agent.

Second, the the minimal costs for the principal in Lemma 2 do not lie strictly below

the principal’s optimal equilibrium costs. That is, any non-random inspection strategy

that solves the problem can be supported in a Perfect Bayesian Equilibrium. Predictability

makes it easy to incentivize the principal because the agent immediately detects when an

inspection does not take place as anticipated. In the equilibrium constructed formally

below, the agent immediately stops exerting effort and exits if the principal deviates by not

inspecting as expected. After detecting such a deviation, the agent infers that the principal

has become non-vigilant. The agent would thus begin to shirk, and the principal would

retaliate by setting large fines, which forces the agent to exit.

Note that the exact continuation play after a deviation by the principal is not essential.

What is needed for our construction is that there is a continuation play which is sufficiently

undesirable for the principal in order to incentive her to inspect. The agent’s exit thus

represents, in reduced form, a possibly richer continuation play, which could involve periods

of shirking by the agent, and intensified inspection regimes by the principal in an effort to

reestablish a reputation for vigilance.

18Given that the agent exerts full effort always, any inspection that occurs at the later of two
times in the support must be followed by a continuation equilibrium with strictly higher expected
costs compared to the continuation equilibrium after the earlier possible inspection time.
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3.3 Solving the auxiliary problem

We now illustrate the solution of the principal’s problem in Lemma 2. It is intuitive that

inspections are unnecessary when the agent admits that θt = 0. It follows from the obedience

constraint (O) that the agent has no incentive to misreport noncompliance. We therefore

focus on histories for which the state is in compliance and turn to noncompliance later.

We begin by characterizing the agent’s promised and transitional utility during com-

pliance in terms of a pair of coupled differential equations. The restriction to non-random

policies implies dνIt = 0 everywhere, except at isolated times at which an inspection occurs

with probability 1. In this case, it is without loss for the principal to set dFt = 0 between

inspections. This is because, in the absence of inspections, the fines cannot depend on the

true state (conditional on the report). Further, we verify in the proof that, at the opti-

mum, constraint (H) holds with equality between inspections. Thus, if we start at t = 0

with some initial payoff pair
(
U0
0 , U

1
0

)
, the trajectories of the transitional payoff U0

t and the

persistent payoff U1
t up until the next inspection are pinned down by constraints (Pk) and

(H) in Lemma 1 (with dνIt = dFt = 0 and (H) holding with equality). This pair of coupled

first-order differential equations has the following closed-form solution:

U0
t = ert(U0

0 − α(eλt − 1)(U1
0 − U0

0 )) + c(ert − 1)/r,(4)

U1
t = ert(U1

0 + (1− α)(eλt − 1)(U1
0 − U0

0 )) + c(ert − 1)/r.(5)

Combining these equations yields the identity U1
t − U0

t = (U1
0 − U0

0 )e(r+λ)t. Whenever

there is no inspection, the difference U1
t − U0

t must increase to guarantee that the agent

cannot profit from delaying the report of a transition to noncompliance. Thus, given an

initial payoff pair with U1
0 − U0

0 ≥ c/(λα), the paths U0
t and U1

t satisfy constraints (Pk),

(H) and (O) at all times t ≥ 0. The remaining constraint is (P ), specifically, U0
t ≥ −B and

U1
t ≤ 0.19 To make the promised utilities satisfy (P ) at all times, the principal performs

inspections which allow her to increase the transitional utility U0
t without violating the

honesty constraint in order to push U0
t and U1

t back together.

We solve for the optimal strategy using a recursive approach due to Davis (1993), using

the promised utilities
(
U0
t , U

1
t

)
as state variables. This approach involves restricting the

principal to perform a bounded number of inspections and then solving for the optimal

19By (O), these are two relevant inequalities implied by (P ).
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Figure 1: The evolution of promised util-
ities over time conditional on continued
compliance with a single inspection. Per-
sistent utility is shown as solid line, tran-
sitional utility is dashed.

T ∗

U1
t

U0
t

u1∗

u0∗

0

−B

t

U1, U0

Figure 2: The evolution of promised
utilities over time conditional on con-
tinued compliance with repeated inspec-
tions. Persistent utility is shown as solid
line, transitional utility is dashed.

strategy iteratively, letting the maximal number of inspections go to infinity.

Suppose the principal can perform only one inspection and consider the choice of initial

values (U0
0 , U

1
0 ) = (u0, u1) to ensure that U1

t ≤ 0 and U0
t ≥ −B for as long as possible.

First, what is the optimal u0 for any given value of u1? From (4) and (5) we see that, for

all t, the value U0
t is increasing and U1

t is decreasing in u0. Thus, to satisfy U1
t ≤ 0 and

U0
t ≥ −B, it is optimal to choose u0 as large as (O) permits, i.e. equal to u1 − c/(λα).

This is intuitive: as the honesty constraint (H) requires U0
t to fall quickly enough, it is

optimal to start off from the highest possible value. Second, with u0 = u1 − c/(λα), what

is the optimal level of u1? Substituting for u0 in (4) and (5), we see that, for all t, U0
t and

U1
t are increasing in u1. Thus, an increase in u1 makes U0

t hit the lower bound −B later

while it makes U1
t hit the upper bound 0 earlier. Given that the objective is to satisfy both

constraints for as long as possible, the optimal choice of u1 when there is one inspection

makes U0
t and U1

t hit their respective boundary at the same time. Figure 1 illustrates this.

For any other choice of initial value u1, the minimum of both hitting times would be lower.

Going to multiple inspections, note that hitting U1
t = 0 at any time implies that no

further incentives can be provided and the agent would stop exerting effort.20 The optimal

20Clearly, if the agent is expected to exert effort at all times, his expected utility cannot lie above
−c/r. In fact it will lie strictly below this level as breaches of compliance, and thereby fines, cannot
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initial utility u1 with multiple inspections is lower so that at the first inspection, i.e. when

U0
t reaches −B, the value U1

t is below 0 to incentivize the agent in the future and allow

time until the following inspection. When iterating over the number of inspections, let

u1(n) denote optimal initial value of the trajectory of U1
t when the maximal number is n.

With each additional inspection, the optimal value u1(n) decreases. This implies that the

time until the first inspection, Tn, decreases as U0
t reaches −B earlier. As n grows large,

u1(n) converges to a unique limit u1∗ and Tn converges to a unique limit T ∗, the length of

the inspection cycle. In the optimal mechanism the persistent utility U1
t is u-shaped and

it returns to the initial value u1∗ at each inspection (see Figure 2). The limit values u1∗

and T ∗ are characterized by (4) and (5) with boundaries (U0
0 , U

1
0 ) = (u1∗− c/(λα), u1∗) and

(U0
T ∗ , U

1
T ∗) = (−B, u1∗). This yields

T ∗ = sup
{
T > 0

∣∣∣ 0 = (B − c/r) (1− e−rT )λα− ceλT (erT − α) + c(1− α)
}
,(6)

u1∗ = −B + e(r+λ)T
∗ c

λα
, and u0∗ = u1∗ − c

λα
.(7)

So far, we abstracted from transitions to state θt = 0. If such a breach of compliance

occurs at time t, the persistent utility becomes U0
t in (4). The agent then pays a lump-sum

fine P (t) = u0∗−U0
t to increase the persistent utility to u0∗. Using constant flow fines (and

no inspections), the promised utilities are held constant at U0
t = u0∗ and U1

t = u1∗ as long

as θt = 0.21 This way, upon another transition to compliance, the promised utilities are

already at the optimal initial values.

4 Equilibrium

4.1 The principal-optimal equilibrium

We now characterize a principal-optimal equilibrium. The equilibrium we consider alter-

nates between two phases: First, while the agent reports compliance, he pays no fine and

is subject to periodic inspections with inspection cycle length T ∗. Formally, let the clock

τt ≡ t− sup{s ∈ [0, t) | θ̂s = 0 ∨ dN I
s = 1}

be fully ruled out even with full effort.
21Verify with equations (Pk) and (H) for the case i = 0 and j = 1 and dνIt = 0.
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count the time in compliance since the last transition or inspection. While in compliance

(θt = 1), the clock τt increases linearly with slope 1, and it drops to 0 during noncompliance

(θt = 0) or at each inspection (dN I
t = 1). At each time t with τt = T ∗, an inspection is

performed. Second, while the agent reports noncompliance, he pays a lump-sum fine at the

time of the transition a constant flow fine at all times.

Theorem 1. There is a principal-optimal truthful and maximally compliant equilibrium

with inspection cycle length T ∗ and initial expected payoff pair (u0∗, u1∗) such that on the

equilibrium path:

• Inspections are performed only during compliance (θt = 1); with a periodic inspection

whenever the clock τt reaches T ∗.

• Fines are levied only during noncompliance (θt = 0); with a constant flow fine

f∗ = −ru0∗ at all times t with θt = 0, and a lump-sum transition fine P (τt) = u0∗−U0
τt

at all times t with θt− = 1 and θt = 0, where U0
t is given in (4) with initial value u0∗.

Off the equilibrium path:

• If an inspection reveals noncompliance, i.e., that the agent misreported, then the agent

pays the maximal fine, so that his continuation utility is −B.

• If τt = T ∗ but the principal fails to inspect, then the agent exits.

Figure 3 illustrates the equilibrium for a sample path with initial state θ0 = 1. While

in compliance, the agent pays no fines, and an inspection is performed at time t1, where

τt1 = T ∗. During compliance the agent’s persistent payoff evolves according to Ut = U1
τt ,

which is equal to u1∗ initially and at the inspection time. At time t2 in Figure 3, a breach

of compliance occurs. In a first step, the agent’s utility drops to the current level of the

transitional utility U0
τt2

, the dashed blue line; at the same time, the agent pays the transi-

tion fine P (τt2), so that his continuation utility increases by that amount to u0∗. While in

noncompliance, the agent pays a constant flow fine that keeps the continuation utility con-

stant at u0∗ until the transition back to compliance at t3. At this transition, the persistent

utility jumps up to u1∗ and the evolution takes the same course as at t = 0 and at t = t1.

Note that the persistent utility of the agent during compliance is u-shaped. This is

the result of two opposing forces. On one hand, the agent faces a mounting threat from
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Figure 3: The evolution of an example path realization starting in the compliant state.
Solid curves depict the agent’s persistent payoff in the current state, dashed curves depict
the transitional payoff, to which the agent’s payoff jumps when the state changes.

the increasing transition fine he must pay when becoming non-compliant. The rise in the

transition fee is necessary to maintain truth-telling incentives. On the other hand, the

likelihood of having to pay this fine falls as he approaches the next inspection. Early on in

the inspection cycle, the first force is dominant, resulting in a decrease in persistent utility,

while the latter force is dominant towards the end of the inspection cycle.

A crucial feature of this equilibrium is that inspections are predictable from the perspec-

tive of the agent. With non-random inspections, each inspection is a signal to the agent of

the principal’s continued oversight. Demonstrated vigilance shapes the agent’s perception

that he will eventually be detected if he was to deviate. While random inspections may

be supported in a relational contract, such arrangements require strong deterrents for the

principal to ensure her adherence to the equilibrium strategy. This requirement ultimately

renders randomization non-beneficial for the principal (Lemma 2).

The equilibrium in Theorem 1 naturally features penalty reductions for early disclosures

of noncompliance. This is consistent with voluntary disclosure schemes that are commonly

used in practice. The U.S. environmental protection agency (EPA) employs a self-reporting

program called “Incentives for Self-Policing” that requires firms voluntarily disclose any vio-

lations that are detected internally. Similar to the way the agent is incentivized in the above
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equilibrium, firms who disclose violations early are rewarded by a reduction in penalties and

a suspension of inspections until compliance is restored. Theorem 1 provides insights into

how enforcement agencies can benefit from offering regulated firms incentives for volun-

tary disclosure. Voluntary disclosure allows the principal to limit inspection to periods of

compliance, and thus lowers the overall inspection costs. The EPA points out that the

advantage of these incentives lies in “making formal EPA investigations and enforcement

actions unnecessary.”22 In the theoretical literature, the observation that voluntary disclo-

sure reduces monitoring costs dates back to Kaplow and Shavell (1994), which introduces

self-reporting into the enforcement model by Becker (1968). Without the agent’s disclosure,

the principal in our model would not be able to consistently avoid inspections during phases

of noncompliance.23

4.2 Comparative Statics

How do variations in the parameters affect the length of inspection cycles and the inspection

costs? As one would expect, if the penalty bound B increases or the effort cost c decreases,

the agency problem becomes less severe; the inspection cycle T ∗ becomes larger and the

expected costs decrease.24 The effect of a change in the arrival rate of shocks λ is more

intricate. An increase in λ decreases the state’s persistence and has a non-monotone effect

on the length of inspection cycles and the overall costs. The following result makes these

statements precise. To ensure that the equilibrium in Theorem 1 always exists, we require

that λ > λ ≡ cr/(Brα− c) > 0, fixing all other parameters.25

Lemma 3. As the arrival rate of shocks λ increases

• the inspection cycle length increases for low λ and decreases for high λ, with

limλ↓λ T ∗(λ) = limλ↑∞ T ∗(λ) = 0, and

22https://www.epa.gov/compliance/how-we-monitor-compliance
23See Varas et al. (2020) for a model without reports. Our results confirm the conjecture in that

paper that voluntary disclosure can avoid unnecessary inspections (see Varas et al., 2020, p. 2921).
24A formal proof for the changes in B and c, as well as comparative statics with respect to α, can

be found in a working paper version, which is available upon request.
25Observe that the lower bound on B required for feasibility of effort, B̄ = c(r+λ)

λαr , grows arbitrarily
large as λ goes to 0.
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• the discounted inspection costs decrease for low λ and increase for high λ, with

limλ↓λK∗0 (λ) = limλ↑∞K∗0 (λ) =∞.

For the cycle length T ∗ there are two opposing effects if λ increases. First, at any given

instance the state is more likely to change in response to current effort. The marginal

benefit from effort is higher and it is easier to incentivize the agent, allowing for an increase

in T ∗. Second, the state becomes more fragile, the link between current effort and future

compliance weakens. Delayed inspections have less incentive power, forcing the principal to

shorten inspection cycles. Lemma 3 shows that the first effect dominates for low λ and the

second effect dominates for high λ.

For any fixed T ∗, the total inspection costs decrease in λ as any cycle of fixed length

is more likely to be interrupted by a breach of compliance, so the inspection is less likely

to be carried out. Thus, for low λ, this effect and the increase in T ∗ work in the same

direction. Inspection costs decrease in λ. For high λ, the two effects work in opposite

directions. Lemma 3 shows that the decrease in T ∗ is fast enough to outdo the second

effect; the inspection costs increase in λ. Both inspection intensity and inspection costs

grow arbitrarily large at both extremes.

As λ goes to infinity and state persistence vanishes, inspections must be immediate to

deter deviations. This highlights a key disadvantage of non-random inspections and the

absence of commitment. Intuitively, a shirking agent faces an “effective” discount rate of

r + λ when considering the impact of the next inspection. This is because the state today

determines the state at the next inspection only with probability e−λT . To ensure inspection

effectiveness, T ∗(λ) must approach zero fast enough so as to keep limλ→∞ λe−(r+λ)T
∗(λ)

strictly positive. For the principle, in contrast, the effective discount rate is r + λ(1 − α)

which is smaller than that for the agent. The limit of the principal’s cost is proportional to

limλ→∞ λe−(r+(1−α)λ)T ∗(λ). It is then easy to see that this cost must be infinite for α < 1

when limλ→∞ λe−(r+λ)T
∗(λ) > 0.

The high compliance cost for large λ arises from the agent’s opportunity to regain com-

pliance with high probability unless the next inspection is imminent. Imminent inspections

(T ∗ near 0) inflate costs. Random inspections may be valuable, allowing the principal to

threaten immediate inspections without performing them constantly. We now confirm that

random inspection schedules outperform predictable ones when feasible. With randomiza-

tion, the principal strictly prefers higher arrival rates λ.
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5 Commitment

Our results show that, without commitment, the principal cannot benefit from randomiza-

tion. In this section we confirm that, if the principal could commit to follow through with

random inspection schedules, this would decrease inspection costs.

One way to enhance commitment to a profitable random procedure in arm’s-length

enforcement is to separate planning and execution of inspections, as seen in German banking

supervision. The European Central Bank or the supervisory agency at the Finance Ministry

(BaFin) schedules audits, while the German Bundesbank executes them (BaFin, 2016). The

inspection cost is not incurred by the party taking the inspection decision, eliminating the

temptation to delay or skip inspections. This separation differs significantly from two

seemingly similar alternatives: outsourcing all oversight or compensating the principal for

inspection costs. Outsourcing only shifts the problem one layer further, compensation

requires precise knowledge of the cost to avoid inefficient inspections.26

Alternatively, the lack of detectability, which hinders profitable randomization, can be

overcome if the principal is responsible for overseeing a large pool of independent agents

and there are public records. The principal can then regularly inspect a fixed proportion

of agents and make the results publicly available to create a verifiable signal of continued

vigilance. For example, the EPA’s database “Enforcement and Compliance History On-

line” collects over 44,000 inspected facilities within the 12 months up to April 2021;27 the

Public Company Accounting Oversight Board (PCAOB) publicizes approximately 100-300

inspection reports per year.28

To confirm the benefit of randomization, consider the following mechanism, which is

optimal in the class of stationary random mechanisms.29

26If the compensation falls short of the actual cost and effort required for an inspection, the
incentive to skip it persists. If the compensation exceeds the cost this creates an incentive to inspect
inefficiently often.

27https://echo.epa.gov
28https://pcaobus.org/oversight/inspections/firm-inspection-reports
29For a proof of this claim, see Appendix C. Note that we do not claim that the mechanism

presented here is the optimal commitment mechanism.
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• Inspections are performed only during compliance with constant Poisson arrival rate

m∗R = r
B̄

B − B̄ .

• Fines are levied only during noncompliance with a constant flow fine

f∗R = rB̄.

• If an inspection reveals noncompliance, then the agent pays the maximal fine.

Similar to the equilibrium with predictable inspections, there are two phases. Inspec-

tions but no fines during compliance; and fines but no inspections during noncompliance.

The differences are that inspections arrive at random and there is no lump-sum fine at

transitions to noncompliance.

Inserting into Lemma 1 the values dFt = 0 and dνIt = m∗R dt in case i = 1, and the

values dFt = f∗R dt and dνIt = 0 in case i = 0, it is straightforward to verify the payoffs of

the agent are constant at

U1
R = − c

rα
, U0

R = − c

rα
− c

λα
.(8)

Here, U1
R is the persistent and U0

R is the transitional payoff when the agent reports com-

pliance, and vice versa when the agent reports noncompliance. It is straightforward that

all constraints are satisfied at all times, with (H) binding in i = 1 and (O) binding in both

states. The next result shows that the principal’s inspection costs with predictable inspec-

tions are generally higher than with random inspections. In contrast to the predictable

inspection schedule, a high arrival rate λ benefits the principal in this random mechanism.

Theorem 2. The inspection costs in the stationary random mechanism defined above are

strictly lower than in the principal-optimal equilibrium in Theorem 1. Further, the costs in

this random mechanism are decreasing in λ for all λ, with

lim
λ↓λ

KR(λ) =∞ and lim
λ↑∞

KR(λ) =
cα

Brα− cκ.

Random inspections dominate predictable inspection procedures for two reasons. First,

by the argument at the end of Section 4.2, noise and delay make periodic inspections less

effective. The threat of an imminent inspections at all times is more effective in our setting,
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even when holding the payoff impact of each inspection fixed.30 That is, if the agent’s initial

utility is fixed at some level u, the costs from the random mechanism implementing this

utility level are strictly below the costs in the predictable equilibrium implementing the same

level. Second, in our setting with fines and self-reported compliance, random inspections

allow for a greater payoff impact of an inspection on the deviating agent: with predictable

inspections, self-reporting requires a transition fine whenever a breach of compliance occurs.

The risk of the transition fine reduces the agent’s overall equilibrium payoff. Since the lower

bound on payoffs is fixed at B, this reduction decreases the maximum loss that the principal

can impose when an inspection reveals a misreport. Thus, predictable inspections have a

smaller payoff impact making them overall less powerful.

Our finding that random inspections provide incentives more effectively is consistent

with Varas et al. (2020) who study a setting without voluntary disclosure. They show

that (partially) predictable inspections can be optimal when the principal derives direct

value from information, i.e. when her flow-payoff is convex in the posterior belief. In

our model, the principal induces honest self-disclosure. Along the equilibrium path, the

principal always knows the true state. Therefore, introducing convexity in the principal’s

value as a function of her belief would not affect our results; her belief is always 0 or 1.

Varas et al. (2020) identify a tradeoff according to which incentive provision recommends

randomization while information acquisition makes predictable inspections more profitable.

Our analysis suggests that self-reporting can resolve this tradeoff in favor of randomization

when the current state is known to the agent and monetary incentives are feasible.

6 Conclusion

We study enforcement through inspections and fines. In relational enforcement, maximum

compliance and truthful disclosure are attained through non-random inspections. A fully

committed principal would benefit from random inspections.

The persistent effect of the agent’s effort on compliance makes it possible to create

incentives through isolated inspections. An intermediate level of persistence is optimal in the

case of relational enforcement. If the principal can commit to random inspections, inspection

30See also Varas et al. (2020), who show that a constant inspection rate provides incentives most
effectively under commitment when the payoff consequence of each inspection is fixed.
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costs are increasing in the level of persistence as compliance becomes less responsive to effort.

This highlights the importance of persistence in relational enforcement.

Throughout the analysis, we assume that the principal does not benefit from the fines

imposed on the agent. This assumption is innocuous. Given that the agent exerts full effort

at all times, when his initial promised utility is u, the expected discounted sum of fines

paid by the agent is equal to −u − c/r. If the principal were to benefit from fines at rate

β ∈ (0, 1], her objective would be to maximize −K(u) +β(−u− c/r) instead of maximizing

−K(u) in the baseline model. Denoting the maximizer of −K(u) by u∗, it is easy to see

that the optimal equilibrium consists of an initial fine B+u∗ paid to the principal, followed

by the equilibrium of Theorem 1.31

A possible variation to our model is to allow the principal to pay subsidies to the

agent when successfully passing inspections. If the principal could reward the agent for

passed inspections, the upper bound on the agent’s continuation utility would increase.

The principal could then decrease the inspection frequency as the maximal punishment

increases. With commitment to random inspections, the principal could essentially avoid

all inspection costs if rewards are unbounded. She could offer an arbitrarily large reward

after inspecting with vanishing probability.

The assumptions that the principal implements full effort is natural in many situations,

for example when the principal, tasked with monitoring compliance, is not the same institu-

tion as the one designing the regulation. The assumption is also important for tractability.

To let the principal choose effort, the model would need to account explicitly for the princi-

pal’s benefit from compliance.32 More importantly, the optimization problem would become

substantially more complex. Maximizing over the effort level would add a continual control

at all times.33

31The agent’s initial utility (before paying the fine) is at his outside option −B and then jumps to
u∗. The principal’s payoff −K(u∗) +β(B− c/r) is clearly an upper bound for −K(u) +β(−u− c/r)
among u ≥ −B.

32In some cases, when the principal’s benefit is large enough, implementing full effort is optimal
and the analysis would be unaffected.

33Indeed, for predictable inspections, we side-step the problem of continual controls by showing
that it is without loss to levy no fines between inspections. This difficulty is also the reason why we
do not claim that the random mechanism in Section 5 is optimal among all inspection mechanisms.
While it is optimal among any Markovian procedure, confirming that it is optimal generally would
require a verification argument which deals with continual controls that can change both continuously
or impulsively. We are not aware of existing dynamic programming results to verify that the recursive
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Similarly, we focus on equilibria with truthful self-reports. This focus is natural in

many applications in which it is essential for regulators to accurately identify compliance

violations. In the auxiliary mechanism design problem with principal commitment, having

only one agent ensures that the revelation principle applies. With commitment, the prin-

cipal can replicate the outcome of any combination of mechanism and reporting strategy

with the corresponding direct mechanism and a truthful reporting strategy. However, in

the equilibrium problem without commitment, we do not rule out potential benefits from

non-truthful behavior. Since we find the optimal predictable equilibrium via the auxiliary

mechanism design problem, the only remaining concern is whether the principal could ex-

ploit non-truthful reporting to benefit from random inspections in equilibrium. We suspect

this is not the case, but verifying the conjecture is beyond this article’s scope.

approach we employ remains valid in this class of optimization problems.
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Appendix A: Proofs for Section 3

Proof of Lemma 1. The proof of Lemma 1 consists of two intermediate results. Lemma A

provides a martingale representation for the agent’s lifetime expected utility and Lemma B

provides necessary and sufficient conditions for the path of expected payoffs such that full

effort and truthful reporting is a best response for the agent.

Define Wt to be the agent’s lifetime expected utility, with expectations taken with

respect to the information that is available at time t:

Wt =

∫ t

0
e−rs (−dFs − cηs ds) + e−rtUt

By construction, the process {Wt}t≥0 is a martingale (Davis, 1993, p. 20). There are three

types of events: changes in the state, changes in reports, and inspections. Inspections

are governed by the process N I given by the principal’s strategy. For consistency, we

introduce the counting processes N θ = {N θ
t }t≥0 and N θ̂ = {N θ̂

t }t≥0 that count the number

of changes in the state of compliance and in the reports, respectively. For each process

Na with a ∈ {θ, θ̂, I}, define the compensator to be a predictable process νa = {νat }t≥0
such that the compensated process Na

t − νat is a martingale. The compensator exists under

very general conditions and can be interpreted as the predictable drift of the underlying

(non-predictable) stochastic process. For the hazard rate of transitions in compliance, we

shall write qt(ηt) := dνθt /dt, or, more explicitly,

qt(ηt) = θt−λ(1− αηt) + (1− θt−)λαηt.(9)

The martingale representation theorem for marked point processes (Last and Brandt,

1995) implies the following result.34

Lemma A. There exist predictable processes ∆θ, ∆θ̂, ∆I such that the evolution of the

agent’s expected utility is given by

dUt = rUt dt+ dFt + cηt dt+
∑

a∈{θ,θ̂,I}
∆a
t (dN

a
t − dνat ).(10)

The processes ∆θ, ∆θ̂ and ∆I have an intuitive interpretation: They represent the

34A formal proof for our setting, which is straightforward adaptation of the proof of Theorem
1.13.15 in Last and Brandt (1995) p.25, is provided in Online Appendix ON-B.

25



jump in utility at time t that results from a change in compliance, a change in reported

compliance, or an inspection.

The following lemma will complete the proof of Lemma 1:

Lemma B. A mechanism that induces the payoffs {Ut}t≥0 is incentive compatible with full

effort and truthful reporting if and only if for all t ≥ 0:

(i) (r + qt(1))∆θ̂
t − dνIt (∆I

t −∆θ̂
t ) ≥ d∆θ̂

t when θt 6= θ̂t,

(ii) (1− 2θt−)λα(∆θ
t + ∆θ̂

t ) ≥ c when θt = θ̂t,

(iii) Ut ∈ [−B, 0].

Proof. Define

Wt =

∫ t

0
e−rs(−dFs − cηs ds) + e−rtŨt.

to be the agent’s expected payoff from choosing effort {η̃s} and report {θ̂s} up to time t with

maximum effort and truthful reporting thereafter. Here Ũt is the expected continuation

payoff. We may have Ũt 6= Ut if the agent has reported non-truthfully, i.e., θ̂t− 6= θt−.

Consider first the case in which the agent’s report regarding his type at time t is truthful,

so that Ũt = Ut. Differentiating with respect to t yields

dWt = e−rt(−dFt − cηt dt)− re−rtUt dt+ e−rt dUt.

Using Lemma A to replace dUt yields

dWt = e−rt
(

(1− ηt)cdt+
∑

a∈{θ,θ̂}
∆a
t (dN

a
t − qt(1) dt) + ∆I

t (dN
I
t − dνIt )

)
.

If the agent deviates for an additional instant (but still reports truthfully) then

dN θ
t = dN θ̂

t =

1 with probability qt(η̃t) dt

0 with probability 1− qt(η̃t) dt
.

Taking expectations therefore yields

EAt [dWt] = e−rtEA
[
(1− ηt)cdt+ (∆θ

t + ∆θ̂
t )(qt(η̃t)− qt(1)) dt

]
.

It follows from Condition (ii) that

(∆θ
t + ∆θ̂

t )q(η̃t)− cηt ≤ (∆θ
t + ∆θ̂

t )qt(1)− c.
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Thus EAt [dWt] ≤ 0. We thus obtain the chain of inequalities

EA0 [Wt] = EA0
[∫ t

0
dWs +W0

]
=

∫ t

0
EA0 [dWs] + EA0 [W0] =

∫ t

0
EA0
[
EAs [dWs]

]
+W0 ≤W0.

(11)

Now, consider the case in which the agent’s most recent report at time t is false, that is

θt− 6= θ̂t− and he continues the non-truthful strategy for an additional moment at time

t. If no change in the state occurs at the additional moment, then the agent must correct

his report immediately thereafter. If a change occurs, then the previously false statement

becomes truthful, and thus his report does not change. Therefore, we have the following:

dŨt = Ũt − Ũt−dt
= dN θ

t (Ut − Ut−dt −∆θ̂
t−dt) + dN I

t (Ut + ∆I
t − Ut−dt −∆θ̂

t−dt)

+ (1− dN θ
t − dN I

t )(Ut + ∆θ̂
t − Ut−dt −∆θ̂

t−dt)

= dN θ
t (dUt + d∆θ̂

t −∆θ̂
t ) + dN I

t (dUt + d∆θ̂
t −∆θ̂

t + ∆I
t ) + (1− dN θ

t − dN I
t )(dUt + d∆θ̂

t )

= dUt + d∆θ̂
t − dN θ

t ∆θ̂
t + dN I

t (∆I
t −∆θ̂

t ).

Using again Lemma A to replace dUt, we obtain

dWt = e−rt(−dFt − cηt dt)− re−rt(Ut + ∆θ̂
t )

+ e−rt
(
rUt dt+ dFt + cdt+ ∆θ

t (dN
θ
t − q∗t ) + d∆θ̂

t − dN θ
t ∆θ̂

t + dN I
t (∆I

t −∆θ̂
t )
)

It follows from the honesty constraint (i) that, in expectation, d∆θ̂
t ≤ (r + qt(1))∆θ̂

t −
dνt(∆

I
t −∆θ̂

t ). Substituting it into dWt and simplifying, using again Ũt = Ut + ∆θ̂
t , gives

EAt [dWt] = e−rt
(

(1− ηt)cdt+ (∆θ
t −∆θ̂

t )q(η̃t)− qt(1)(∆θ
t −∆θ̂

t )
)
.

Now, ∆θ
t −∆θ̂

t = (∆θ
t + Ut)− (∆θ̂

t + Ut) is the payoff difference from a change in the state

without a change in report and a change in report without a change in the state. Since

θt− 6= θ̂t− by hypothesis, this is identical to ∆̃θ
t + ∆̃θ̂

t after the history in which the true

state was identical to his report. Thus (ii) implies that ηt = 1 maximizes the right-hand

side, so that EAt [dWt] ≤ 0. By the same argument as in (11), we have EA0 [Wt] ≤ W0 = U0,

so that the agent cannot profit from deviating. Taking the limit, we find that

lim
t→∞

EA0 [Wt] ≤ U0.

27



which implies that the agent cannot gain from deviating from maximum effort and truthful

reporting. Conversely, if the incentive constraint (i) is violated, then the above inequalities

are inverted, so that the agent has a strict incentive to be dishonest. Likewise, if (ii) is

violated, the agent has a strict incentive to exert no effort, and a violation of (iii) leads to

exit by the agent.

To complete the proof of Lemma 1, we show that condition (Pk) follows from Lemma A,

and (H), (O) and (P ) are equivalent to conditions (i), (ii) and (iii) in Lemma B.

Consider a mechanism and a strategy for the agent that jointly generate the payoff

process {Ut}t≥0 for the agent, and denote by {U1
t , U

0
t }t≥0 the associated pair of promised

utilities defined in Equation (3).

(1.) By the definition of U0
t , U

1
t , we have

∆θ
t + ∆θ̂

t =

U1
t − U0

t if θt− = θ̂t− = 0

U0
t − U1

t if θt− = θ̂t− = 1
, qt(1) = qt(1) =

λα if θt− = 0

(1− α)λ if θt− = 1
.

(12)

Combining these two expressions, we can write more succinctly:

qt(1)(∆θ
t + ∆θ̂

t ) = λ(θt− − α)(U1
t − U0

t ).

Lemma A then implies that, conditioning on the event that dN θ
t = dN θ̂

t = dN I
t = 0, we get

exactly condition (Pk) in Lemma 1.

(2.) Next, suppose that the agent is not truthful after some history at time t. Let i = θt

be the true state and suppose the agent reports j = 1− θt. Then, U it = Ut + ∆θ̂
t , and

(13)

dU it = (Ut+dt + ∆θ̂
t+dt)− (Ut + ∆θ̂

t ) = rUt dt+ dFt + c dt− qt(1)∆θ
t + d∆θ̂

t

≤ rUt dt+ dFt + cdt− qt(1)∆θ
t + (r + qt(1))∆θ̂

t − dνt(∆
I
t −∆θ̂

t )

= rU it + λ(i− α)(U1
t − U0

t )− dνt(∆
I
t −∆θ̂

t ) + dFt + cdt

The second line follows from Lemma A, the inequality in the third line follows from

Condition (i) in Lemma B, where we take expectations conditional on the event that

dN θ
t = dN θ̂

t = 0. The last equality in (13) holds since

qt(1)(∆θ
t −∆θ̂

t ) = qt(1)(Ut + ∆θ
t − (Ut + ∆θ̂

t )) = qt(1)(U jt − U it ) = λ(i− α)(U1
t − U0

t ).

Punishment is without cost for the principal, and therefore, it is optimal to impose the
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most severe punishment after an inspection reveals a dishonest report. The severity of

punishments is restricted by the limits of enforcement that require the agent’s continuation

value not to fall below the lower bound −B < 0. Therefore, we have

∆I
t −∆θ̂

t = Ut + ∆I
t︸ ︷︷ ︸

=−B

−(Ut + ∆θ̂
t︸ ︷︷ ︸

=U it

) = −(B + U it ).

Substituting this last equation into Equation (13) yields

dU it = rU it + λ(i− α)(U1
t − U0

t ) dt+ dνt(B + U it ) + dFt + cdt,

which is equal to Condition (H) in Lemma 1. Conversely, if (i) does not hold at some t,

then using the same steps as above, the inequality is reversed, so that (H) is violated.

(3.) Substituting Equation (12) into the obedience constraint (ii) we obtain for each θt−:

(∆θ
t + ∆θ̂

t )(1− 2θt−)λα = λα(U1
t − U0

t ) ≥ c.

The last inequality is identical to (O) in Lemma 1. Conversely, if (ii) is violated at some t,

then the inequality is reversed, so that (O) is violated.

Proof of Lemma 2. The proof of Lemma 2 consists of two results, stated and proven

formally below.

Lemma C. For any truthful and maximally compliant equilibrium, there exists a principal-

strategy such that truthful reporting and maximal compliance is a best response for the agent

and

(i) inspections are predictable for the agent whenever he reports compliance and

(ii) it generates weakly lower inspection costs for the principal.

Proof of Lemma C. Take any truthful maximally compliant equilibrium. Let U0
t , U

1
t be

the continuation payoffs of the agent in this equilibrium. The following steps present a

modified inspection schedule satisfying the properties stated in Lemma C. As the original

equilibrium is truthful and maximally compliant, U0
t and U1

t satisfy the constraints from

Lemma 1. First, we argue for any inspection following a high report, it is without loss to

assume that truthful reports are never punished more than misreports to the low state at

the time of an inspection. That is, if the persistent payoff U1
t jumps downward on path

after an inspection, it will do so by less than the distance from the transitional utility to the
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lower bound −B. Formally, let Ū1
t be the agent’s persistent payoff right after an inspection

performed at time t and let U1
t− be the payoff just prior to time t. Recall that by definition

∆I
t = Ū1

t − U1
t−. We show that, without loss, ∆I

t > −B − U0
t .

Suppose, to the contrary, that ∆I
t ≤ −B − U0

t ≤ 0. Then, we can construct an-

other truthful maximally compliant equilibrium in which the principal’s inspection costs

are weakly lower by removing instant t from the support of the inspection distribution. To

satisfy the agent’s incentives for truthtelling and compliance, we compensate for the change

in utility resulting from eliminating the inspection. To this end, introduce an additional

fine at t, such that the new fine is dF̂t = dFt − dνIt ∆I
t , where dFt denotes the fine specified

in the original equilibrium. Hence, the agent’s expected loss from the inspection caused

by ∆I
t < 0 is paid as a fine at time t. This way, the path of persistent payoff U1

t remains

unchanged for all s ≤ t. Similarly, the path of transitional utility, U0
s , remains unchanged

as the continuation equilibria after a transition remain the same. As both paths U1
s and U0

s

are as before, the obedience constraint remains satisfied.

To see that the honesty constraint is not violated by this change, consider the constraint

(H) in case j = 0:

dU0
t ≤ r(U0

t ) dt− λα(U1
t − U0

t ) dt+ dνIt (B + U0
t ) + dFt + c dt.

The effect of the proposed change on the right-hand-side of this constraint is −dνIt (B +

U0
t )− dνIt ∆I

t . As ∆I
t ≤ −B−U0

t , this effect is positive and the path of U0
s still satisfies the

honesty constraint. In order to randomize at time t in the original equilibrium, the principal

must have been indifferent between inspecting and continuing without, so that removing

instant t from the support weakly lowers inspection costs. Now, with ∆I
t > −B − U0

t , we

prove Lemma C. Suppose, towards contradiction, that the statement in the result is false.

Then, there must be some time t and history ht with θ̂t = 1 such that any inspection

schedule with the first inspection after t being predictable for the agent must create higher

inspection costs for the principal. We show that this cannot be the case by replacing the

random inspection with a non-random inspection at the earliest realization of the random

inspection schedule.

Without loss, take the time t above to be t = 0 and θ̂0 = 1. Let T be the support of the

first inspection time for this history and denote its infimum by t0 = inf T . If T = {t0}, the

inspection strategy for this history is already predictable, and we continue with the next
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instance, interpreting 0 as the last time of inspection after the high report or the time of

transition to the high report.

When the support is not a singleton, consider first the case in which t0 ∈ T , i.e., the

infimum is contained in the support. In Online Appendix ON-C we extend the argument

to the case t0 /∈ T , i.e., when t0 is an accumulation point. Let t0 ∈ T and consider the

inspection schedule with a certain inspection at t0 in case time t0 is reached without prior

transition. If ∆I
t0 ≥ 0, introduce an additional fine at t0 so that the new fine is given by

dF̂t0 = dFt0 + (1 − dνIt0)∆I
t0 , where dFt0 denotes the fine in the original equilibrium. The

payoff paths U0
s and U1

s remain unchanged for s ≤ t0 and, thus, the obedience constraint

is unaffected. The honesty constraint at t0 is relaxed since both the increase in inspection

probability and the additional fine increase the right hand side of (H). If ∆I
t0 < 0, increasing

the inspection probability from dνIt0 to 1 decreases the persistent payoff path U1
s for all

s ≤ t0 by |∆I
t0 |(1 − dνIt0)e−(r+(1−α)λ)(t0−s). This change in persistent payoff cannot be

compensated by an additional fine at the high report as it would reduce the expected

persistent payoffs further. Instead, we ensure obedience and truthtelling by lowering the

transitional payoff by the necessary amount. To this end, introduce an additional transition

fine of |∆I
t0 |(1 − dνIt0)e−(r+(1−α)λ)(t0−s) to be paid at time s ≤ t0 if a transition to the

bad state occurs. This additional fine ensures that the difference U1
s − U0

s is as in the

original equilibrium, so the obedience and honesty constraints will still be satisfied. To

ensure that this additional transition fine is feasible, we need to verify for all s ≤ t0, that

U0
s − |∆I

t0 |(1− dνIt0)e−(r+(1−α)λ)(t0−s) ≥ −B. This term is decreasing in s, so it is sufficient

to verify that U0
t0 + ∆I

t0(1−dνIt0) ≥ −B. Recall that we have shown that for any inspection

time, ∆I
t0 > −B − U0

t0 . Feasibility follows since dνIt0 < 1.

This concludes the proof of the result by constructing an inspection schedule in which

the next inspection following a good report is predictable, the agent’s incentive constraints

are satisfied, and the principal’s inspections costs have not increased.

The next result implies that predictability of inspections is the only restriction implied

by the principal’s sequential rationality.

Lemma D. Take a strategy profile such that the following hold.

(i) The inspection schedule is predictable for the agent.
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(ii) The agent’s strategy is truthful, maximally compliant and a best response to the prin-

cipal’s strategy.

(iii) The expected cost of the principal along any history is below K̄.

(iv) Every action path generated by the strategy profile is measurable.

Then there exists a perfect Bayesian equilibrium which generates the same distribution over

action paths.

Proof of Lemma D. We show that any predictable principal strategy that generates costs

Kt ≤ K̄ for the principal for all t can be implemented in equilibrium. First, note that after

any history, we can construct a continuation equilibrium in which the agent chooses to exit

the relationship with probability one. To support exit by the agent as a best response, the

principal’s strategy is such that whenever the agent fails to exit although he was supposed

to do so, the principal implements the harshest possible fine. leading to continuation payoff

of −B for the agent. This bad continuation equilibrium can be leveraged to support any

principal strategy as an equilibrium given that it inspections are predictable for the agent.

Let {Nt, Ft} be the paths induced by the strategy profile in the result. By hypothesis (ii),

compliance is incentive compatible for the agent. Let (ñ, f̃) be an alternative strategy for

the principal (with possibly random inspection) and denote by Ñ I the resulting inspection

path if the agent follows the compliant strategy. Adapt the agent’s strategy such that he

exits after any history ht with dN I
t 6= dÑ I

t , that is, whenever the agent observes that the

principal deviated from the original inspection strategy. Define the set D = {t| dN I
t 6= dÑ I

t }
containing the dates at which the agent observes that the principal deviates from her original

inspection strategy. Since the cost for the principal from the original strategy is below

K̄ at each t, and the payoff from any deviating strategy is equal for all t < inf D, her

deviation cannot be profitable as it results in a cost K̄ from inf D onward. Finally, adapt

the principal’s strategy from the result such that he fines the agent as harsh as possible

whenever the agent was expected to exit but failed to do so. This way, for the agent

the strategy which leads to exit at t = inf D is incentive compatible, and the constructed

equilibrium differs from the initial strategy profile in Lemma D at most off the equilibrium

path.

Lemmas C and D in combination imply Lemma 2: to characterize principal-optimal

equilibria, it is sufficient to find a strategy for the principal with non-random inspections
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that induces truthfulness and maximum effort and minimizes the principal’s monitoring

costs.

Appendix B: Proofs for Section 4

Proof of Theorem 1

We first solve the auxiliary problem with additonal constraints below and then verify that

the solution indeed constitutes an optimal mechanism.

B.1 Auxiliary control problem

Consider the following auxiliary control problem

min
{NI

t ,Ft}t≥0

EP
[∫ ∞

0
e−rtκdN I

t

]
(14)

subject to the incentive-compatibility conditions (H), (O), (P ), and the following two ad-

ditional conditions:

(A) When θ̂t− = 1, there are no fines between inspections, that is, dN I
t = 0 implies dFt = 0

and the honesty constraint (H) binds.

(B) When θ̂t− = 0, then the evolution of U1
t is not limited by the honesty constraint (H).

Condition (A) is a restriction on the set of strategies for the principal so that she levies

no fines when the agent reports compliance unless an inspection is performed. Condition

(B) relaxes the incentive-compatibility restrictions, saying the honesty constraint is imposed

only while the agent reports compliance. It is intuitive that a principal-optimal relationship

satisfies these properties as the agent must be incentivized to exert effort and truthfully

report states of compliance. We now solve for the optimal mechanism. We first derive the

optimal Markovian mechanism in the auxiliary problem using an iteration argument. We

then confirm that (i) fines between inspections cannot decrease the principal’s costs, (ii)

there is no mechanism in non-Markov strategies that performs better in the relaxed problem

than the optimal Markovian mechanism, and (iii) that the solution to the relaxed problem

is achievable in the original problem.
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Under Condition (A), the honesty constraint (H) holds with equality during compliance,

so that when θ̂t = 1, Conditions (Pk) and (H) yield a pair of simple first-order differential

equations which can be solved in closed form. The inspection problem thus becomes a

standard deterministic impulse-control problem with state constraints. We solve this by

first deriving the optimal mechanism when the principal can inspect at most n times and

continue iteratively to consider the limit as the total number of available inspections n goes

to infinity. More specifically, for any integer n ≥ 0, consider the problem of maximizing the

objective in (14) subject to limt→∞N I
t ≤ n pathwise, and to the incentive-compatibility

conditions (H), (O), (P ), (A) and (B) at all t ≥ 0 at which N I
t < n. Denote by Kn the

solution to the problem with n available inspections. It then follows from Proposition 54.18

in Davis (1993) that the value function for the auxiliary problem K is the limit of Kn, i.e.,

K = limn→∞Kn.

Evolution of promised utilities during compliance.

We begin by establishing an upper bound for the promised utility for the agent.

Claim 1. Along the path of any maximally compliant mechanism, we have U1
t ≤ −c/(rα).

Proof. Let Ū1 be the supremum of U1
t which exists by (P ). By obedience (O), we have that

Ū1 − c/(λα) is an upper bound for U0
t . Therefore, in a maximally compliant equilibrium,

we must have

Ū1 ≤
∫ ∞
0

e−(r+λ(1−α))s
[
−c+ λ(1− α)(Ū1 − c

λα
)
]

ds.

Solving the integral yields

Ū1 ≤ −c+ Ū1λα(1− α)

rα+ λα(1− α)
⇒ Ū1 ≤ − c

rα
.

Since Ū1 is the supremum for U1
t , we have U1

t ≤ − c
rα as required.

By Assumption A, the promise-keeping and truthtelling constraints in state θ̂t = 1 yield

a system of coupled first-order differential equations with the solution given in (4) and

(5). For given initial values U1
0 = u1 and U0

0 = u0, (4) and (5) reveal immediately that for

u1 < − c
rα , U1

t is u-shaped in t and strictly decreasing in u0 whereas U0
t is strictly decreasing

in t and strictly increasing in u0. We will show below that it is optimal to set u0 = u1− c
λα
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and, therefore, it is sufficient to specify the promised utility u = u1. We define

φ1(t, u) := ert
(
u+

(
1− α
α

)
(eλt − 1)

c

λ

)
− c(1− ert)/r(15)

φ0(t, u) := ert
(
u−

(
1− α
α

)
c

λ
− eλt c

λ

)
− c(1− ert)/r.(16)

Define the boundary hitting times

T θ(u) = min
t≥0
{t|φθ(t, u) ∈ {0,−B}} ,

denoting the length of time until U θt hits the boundary, where θ ∈ {0, 1}.

Claim 2. The boundary hitting times T 0 and T 1 are differentiable in u and their minimum

is quasi-convex.

Proof. It follows from the implicit function theorem that T 1 and T 0 are differentiable.

Define

T (u) = min{T 0(u), T 1(u)}.

It is immediate that φ1 and φ0 are increasing in u. Therefore, an increase in u decreases

T 1(u) and increases T 0(u). It follows that, T is quasi-convex, and T assumes its maximum

at the point u∗1 at which T 0(u) = T 1(u). Hence, T 0′(u) < 0 and T 1′(u) > 0 imply that

(17) T ′(u)

> 0 if u < u∗1

< 0 if u > u∗1.

Claim 3. There is a unique value ū < − c
rα such that φ1(T (ū), ū) = ū.

Proof. We show that for u < −c/(rα) there is a unique t solving φ1(t, u) = u and that the

solution is strictly decreasing in u. After a few simple operations, the identity φ1(t, u) = u

becomes

α

1− α

(
−λ
r
− λu

c

)
︸ ︷︷ ︸

=:LHS

=
e(r+λ)t − 1

ert − 1
− 1︸ ︷︷ ︸

=:RHS

.(18)

It is easy to see that RHS is increasing and convex in t and that limt→0
e(r+λ)t−1
ert−1 − 1 = λ/r.
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LHS is clearly strictly decreasing in u, and for u < −c/(rα), we have,

α

(1− α)

(
−λ
r
− λu

c

)
>

α

(1− α)

(
−λ
r

+
λ

c

c

rα

)
=
λ

r
.

Therefore, for any u < −c/(rα), there is a unique time Ts(u) such that φ1(Ts(u), u) = u.

Moreover, inspection of (18) reveals that this time is continuous and strictly decreasing in

u. Note that for u → −c/(rα), we have T0(u) > Ts(u) → 0 and for u → −B + c/(λα) we

have Ts(u) > T 0(u) → 0. Because T 0(u) is continuous and strictly increasing, and Ts(u)

is continuous and strictly decreasing, there must then exist a unique value ū, such that

Ts(ū) = T 0(ū) and φ1(T
0(ū), ū) = ū.

Claim 4. φ1(T (u), u) > u if u > ū and φ1(T (u), u) < u if u < ū.

Proof. Note that Ts is decreasing while T 0 is increasing. Moreover, Ts(ū) = T 0(ū) by

construction. Thus, for u > ū we have Ts(u) < T 0(u), so that φ1(T
0(u), u) > u. Similarly,

for u < ū we have Ts(u) > T 0(u), so that φ1(T
0(u), u) < u.

Evolution of promised utilities during noncompliance.

We show that during reports of noncompliance, the utility of the agent is held constant

Define β1 = λα/(r + λα).

Claim 5. Let (K0
n,K

1
n) be the principal’s cost functions in an optimal mechanism when

there are n ≥ 1 available inspections. Denote the pair of initial promised utilities in this

mechanism by u∗ = (u0
∗
, u1
∗
). Then

K0
n(Ut) = β1K

1
n(u∗).

Proof. Without loss, assume θ0 = 1. We establish the claim via contradiction. Suppose to

the contrary that K0
n(Ut) > β1K

1
n(u∗), and consider the following alternative mechanism.

For θt = 1, let the new mechanism be identical to the original one. For θ0t = 0 we set

dFt = u0
∗ − U0

t for U0
t < u0

∗
and dFt/ dt = ru0

∗
for U0

t ≥ u0
∗
. In this new mechanism, for

θt = 1, the paths of promised utilities are identical to those in the original mechanism by

construction, so that all incentive-compatibility constraints hold when θt = 1. Moreover,

since U0
t is strictly decreasing in t when θt = 1, we have U0

t < u0
∗

and thus dFt1 > 0. The

promised utilities at θt = 0 in the new mechanism are constant and equal to u∗, so that
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the obedience constraint is satisfied. Along the equilibrium paths, the expected cost for the

principal at time t in state θt = 0 in the new mechanism is therefore

K̂0
n(Ut) =

∫ ∞
0

e−(r+λα)sλαK1
n(u∗) ds =

λα

r + λα
K1
n(u∗) = β1K

1
n(u∗).

Since the new mechanism is identical to the original mechanism for θt = 1, the expected costs

for the principal in the new mechanism are strictly lower than in the original mechanism,

contradicting optimality of the original mechanism.

Derivation of the optimal mechanism in the auxiliary problem.

We now solve for the principal’s value function iteratively by solving a sequence of impulse-

control problems where the number of available inspections is bounded by a number n. We

derive the optimal initial promised utility u∗n for each n, and we show that the sequence

{u∗n} converges to ū as n → ∞. For the case in which the agent reports θ̂t = 0, Claim

5 implies that without loss the expected costs for the principal in state θt = 0 with n

available inspections can be written as K0
n(u0, u1) = β1K

1
n(u1). We show that for all n ≥ 0,

the obedience constraint (O) binds at the outset.

Claim 6. Suppose the total number of available inspections in n. Then there is an optimal

policy such that at the initial pair of promised utility (u0n, u
1
n), the obedience constraint (O)

binds.

Proof. Using Claim 5, there is no loss in generality in assuming that θ̂0 = 1. Consider the

optimal initial utilities (u0, u1), where we assume to the contrary u1−u0 > c/(λα). Denote

by t∗ the minimizer of U1
t . Let T be the first inspection time conditional on no transition,

and let the promised utilities at that time be û1 and û0. Now, fix ε > 0 sufficiently small,

and consider an alternative mechanism identical to the original mechanism, except that the

first time of inspection is (T + ε), and with initial utilities (ũ1, ũ0). If T < t∗, then let

ũ0 = ũ1 − u1 + u0 and let ũ1 solve

û1 = er(T+ε)(ũ1 + (1− α)(eλ(T+ε) − 1)(u1 − u0))− c(1− er(T+ε))/r.

Thus, by shifting the initial promised utilities up, the first inspection date is postponed,

while maintaining incentive compatibility and keeping the terminal values constant. Con-

sequently, the initial utilities could not have been optimal. If T ≥ t∗, then let ũ1 = u1 and
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let ũ0 solve

û1 = er(T+ε)(ũ1 + (1− α)(eλ(T+ε) − 1)(ũ1 − ũ0))− c(1− er(T+ε))/r.

Thus, by shifting up u0 while keeping u1 constant, the first inspection date can be postponed

while maintaining incentive compatibility and keeping the terminal values constant. In

either case, a pair of initial utilities with u1 − u0 > c/(λα) cannot be optimal.

Without loss, we can now restrict attention to initial pairs of utility (u0, u1) such that

u1 − u0 = c/(λα). Let u = u1 denote the initial utility for the agent in the high state. The

paths of promised utilities are then described by φ0(t, u) and φ1(t, u). Define

K1
n(u) = min

0≤t≤T (u)
u′≥φ1(t,u)

∫ t

0
e−(r+λ(1−α))s(λ(1− α)K0

n) ds+ e−(r+λ(1−α))t
(
K1
n−1(u

′) + κ
)

(19)

to be the maximum payoff for the principal at initial utility u for the agent, where the

principal maximizes over stopping times and the post inspection utility u′ resulting from

the terminal promised utility φ1(t, u) and a potential fine at the time of an inspection. Let

u∗n be a minimizer of K1
n and denote by t∗n the associated first inspection date.

Claim 7. Let u∗n−1 be a minimizer of K1
n−1(u) and suppose K1

n−1
′
(u) > 0 for all u > u∗n−1.

Then, t∗n = T 0(u∗n) and φ1(t
∗
n, u
∗
n) > u∗n−1.

Proof. First we show that t∗n = T 0(u∗n). Suppose, to the contrary, that t∗n < T (u∗n). If

φ1(t
∗
n, u
∗
n) > u∗n−1, then because φ1 is strictly increasing in its second argument, we can

find a lower initial utility u < u∗n such that φ1(t
∗
n, u) < φ1(t

∗
n, u
∗
n). Since K1

n−1
′
(ũ) > 0 for

ũ > u∗n−1, we have K1
n(u) < K1

n(u∗n), contradicting optimality of u∗n. If φ1(t
∗
n, u
∗
n) ≤ u∗n−1,

then the optimal initial utility in step n − 1 is u′ = −u∗n−1. We can thus find t > t∗n such

that φ1(t, u
∗
n) < u∗n−1. Thus, the first inspection was delayed, while the continuation utility

for the agent remains constant, contradicting optimality of u∗n. Thus, we have t∗n = T 0(u∗n).

Now suppose φ1(T
0(u∗n), u∗n) < u∗n−1. Then we can find a new initial utility u > u∗n such

that φ1(T
0(u), u) = u∗n−1. Since T 0(·) is increasing we have T 0(u) > T 0(u∗n), contradicting

the optimality of u∗n.

In light of the result of Claim 7, there will be no loss in limiting our attention to the case
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t = T (u) and u′ = φ1(t, u). The principal’s expected costs for given utility u are therefore:

K1
n(u) =

∫ T (u)

0
e−(r+λ(1−α))s(λ(1− α)K0

n) ds+ e−(r+λ(1−α))T (u)(K1
n−1(φ1(t, u)) + κ).

Define β0 = λα/(r + λα) and β1 = λ(1− α)/(r + λ(1− α)). Solving the integrals and

rearranging, the principal’s payoff can be expressed more succinctly as

K1
n(u) = a(u) + b(u)K1

n−1(φ1(T (u), u)),

where

a(u) =
e−(r+λ(1−α))T (u)

1− β0β1 + β0β1e−(r+λ(1−α))T (u)
κ,

b(u) =
e−(r+λ(1−α))T (u)

1− β0β1 + β0β1e−(r+λ(1−α))T (u)
,

Simple calculus reveals

a′(u) = −
(
e(r+λ−αλ)T (u)(r + λ− αλ)2(r + αλ)(r(r + λ))

)(
(1− α)αλe(r+λ−αλ)T (u)r(r + λ)

)2 κT ′(u)

and b′(u) = −e
(r+λ−αλ)T (u)r(r + λ)(r + λ− αλ)2(r + αλ)(

(1− α)αλ2 + e(r+λ−αλ)r(r + λ)
)2 T ′(u),

so that sign a′(u) = sign b′(u) = signT ′(u). From (17), it follows that

a′(u)

< 0 if u < u∗1

> 0 if u > u∗1
, b′(u)

< 0 if u < u∗1

> 0 if u > u∗1.

Step 0: Consider the case n = 0, so the principal cannot perform any inspections. The

principal has no way to incentivise the agent so that her value function is equal to the lower

bound

Kθ
0 = K̄.

Step 1: Suppose the principal can inspect at most once, so that n = 1. Let t be the first

inspection if no transition occurs, u the initial utility for the agent. The expected costs for

the principal when inspecting at time t are

K1
1 (u) = a(u) + b(u)K̄
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The marginal cost increase in utility u is

K1
1
′
(u) = a′(u) + b′(u)K̄.

We have K1
1
′
(u) < 0 for u < u1

∗ and K1
1
′
(u) > 0 for u > u∗1, with u∗1 > ū. Thus u1

∗

minimizes K1
1 .

Step 2: Suppose there are two inspections left to be performed. The principal’s payoff

can be written as

K1
2 (u) = a(u) + b(u)K1

1 (φ1(T (u), u)).

When u > u∗1, then (K1
2 )′(u) > 0, and therefore the optimizer does not exceed u∗1. Because

K1
2 (u) is maximal when u lies at the participation boundary, and is continuous in between,

there must be a minimizer u∗2. The marginal cost increase is

K1
2
′
(u) = a′(u) + b′(u)K1(φ1(T (u), u)) + b(u)Duφ1(T (u), u))K1

1
′
(φ1(T (u), u)).

Here, Duφ1(T (u), u)) is the total derivative of φ1(T (u), u)) with respect to u which can be

shown to be

Duφ1(T (u), u)) = erT (u)
(

1 + T ′(u)

(
c
(
eλT (u) − 1

) 1− α
α

r

λ
+ ru+ c

(
eλT (u)

1− α
α

+ 1

)))
> 0.

Thus, for u > u∗1(> ū):

K1
2
′
(u) = a′(u) + b′(u)K1(φ1(T (u), u)) + b(u)Duφ1(T (u), u))K ′1(φ1(T (u), u))

> a′(u) + b′(u)K1(φ1(T (u), u)) > a′(u) + b′(u)K̄ = K1
1
′
(u)

In particular, this means u∗2 < u∗1.

Step n: K1
n(u) = a(u) + b(u)K1

n(φ1(T (u), u)), has a minimum at u∗n. The marginal cost

at u > u∗n−1 (> ū) is

K1
n
′
(u) = a′(u) + b′(u)Kn−1(φ1(T (u), u)) + b(u)Duφ1(T (u), u))K ′n−1(φ1(T (u), u))

< a′(u) + b′(u)K1
n−1(u) + b(u)Duφ1(T (u), u))K ′n−2(φ1(T (u), u))

< a′(u) + b′(u)K1
n−2(u) + b(u)Duφ1(T (u), u))K ′n−2(φ1(T (u), u))

where the first line follows from our induction hypothesis. Therefore, u ≥ u∗n−1 implies

K1
n
′
(u) < K1

n−1
′
(u) < 0.
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The induction shows that u∗n < u∗n−1 for all n ≥ 0. It follows immediately from the

definition of ū that u∗n > ū for all n. Hence {u∗n} is a decreasing and bounded sequences, so

that by the monotone convergence theorem, the sequence converges to a limit û ≥ ū. Since

{u∗n} is convergent, it is a Cauchy sequence, so that by Claim 3:

lim
n→∞

|u∗n − u∗n−1| = lim
n→∞

|u∗k − φ1(T (u∗n), u∗n)| = 0⇒ û = ū.

This establishes the mechanism characterized in Theorem 1 as the optimum in the

auxiliary problem. We now verify that it is also optimal in the original problem.

B.2 Verification for proof of Theorem 1

B.2.1 No fines between inspections

We now show that the mechanism described in the previous section remains optimal when

we remove Assumption A. To this end, we show that when performing the iteration over the

number of available inspections n, the principal cannot gain from imposing fines between

inspections when n inspections are left. Consider again Step n of the iteration in the

previous section. By the same argument as before, we have u1 − u0 = c/(λα) and the first

time of inspection is at the first time t at which U0
t = −B. The evolution of the paths of

promised utilities are given by

dU1
t = rU1

t dt− λ(1− α)(U1
t − U0

t ) dt+ cdt+ dFt,

dU0
t = rU0

t dt− λα(U1
t − U0

t ) dt+ cdt+ dFt − dµt,

where we let dµt ≥ 0 denote the slack in the honesty constraint. The evolution of the

difference in utilities is

d(U1
t − U0

t ) = (r + λ)(u1 − u0) + dµt,

which implies that the utility paths diverge at least exponentially, and are independent of

any fines and increasing in threats. If the first inspection takes place at t, conditional on

no transition before t, this means that U0
t = −B and

U1
t = −B + e(r+λ)t

c

λα
+

∫ t

0
e(r+λ)s dµs
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The last term has to be zero because otherwise we could find a pair of initial promised

utilities with û1 < u1 and set dµs = 0 for all s ∈ (0, t), and a time t′ > t such that the

promised utilities at time t′ under the new initial conditions are as with the original pair at

time t, thus increasing the principal’s payoff. Therefore, at the first time of inspection,

U1
t = −B + e(r+λ)t

c

λα
.

Given that U t1 is independent of any fines in step n, and there no fines in step n − 1

onwards, we must have U1
t = φ1(T (u∗n), u∗n). This means that the policy of the previous

section with initial promised utilities (u∗n, u
∗
n − c/(λα)) remains optimal even when fines

between inspections are available.

B.2.2 General mechanisms in the relaxed problem

Parts (1.)-(2.) demonstrate that the mechanism described in the theorem is an optimal

Markovian mechanism under the relaxing Assumption B. It remains to verify that no (non-

Markovian) mechanism can do better. Let Kθt(U) denote the expected costs for the prin-

cipal in our mechanism that delivers the agent with promised payoffs of U = (U0, U1). We

show that the expected value in state θt from any incentive-compatible mechanism that

delivers the initial promised payoff U0 = (U0
0 , U

1
0 ) to the agent cannot exceed Kθt(U0).

Since both the inspection cost and the set of feasible continuation utilities do not depend

on their values prior to inspection, we can apply Proposition 54.18 and Theorem 54.28 in

Davis (1993, pp. 235 & 242) to conclude that, Kn, the value function with no more than

n inspections, converges to value function K of the problem without bound on the number

of inspections, and that K is the unique bounded and continuous function that solves the

quasi-variational inequality

UKθ(u)− rKθ(u) ≥ 0,

WKθ(u)−Kθ(u) ≥ 0,(
UKθ(u)− rKθ(u)

)(
WKθ(u)−Kθ(u)

)
= 0,

on the state space
{

(θ, u0, u1)|θ ∈ {0, 1}, (u0, u1) ∈ [−B, 0]2, u1 − u0 ≥ c/(λα)
}

. Here, U
denotes the extended generator of the piecewise deterministic Markov process which is
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defined by the relationship35

EP0
[
Kθt(Ut)

]
= Kθ0(u) + EP0

[∫ t

0
UKθs(us) ds

]
,

in case no inspection occurs before t, and W is the expected cost at an inspection time:

WKθ = min
u0,u1

Kθ(u0, u1) + κ.

Consider an arbitrary incentive-compatible mechanism with inspection process {dN I
t }t and

define the expected value at time t by

Gt =

∫ t

0
e−rs

(
κdN I

s

)
+ e−rtKθt(Ut).

For t = 0, we have G0 = Kθ0(U0). For t > 0, we can represent Gt by the differential formula

(see Theorem 31.3 in Davis, 1993, p. 83) as

Es[Gt]−Gs =

∫ t

s
e−r(z−s)

(
UKθz(Uz)− rKθz(Uz)

)
dz+Es

[∫ t

s
e−r(z−s)

(
WKθz(Uz)−Kθz(Uz)

)
dN I

z

]
.

By the variation inequality above, both integrals are positive so that the process (Gt)t ≥ 0 is

a submartingale bounded by 0. This implies that E0 [Gt] ≥ G0 for any t ≥ 0. In particular,

taking the limit as t approaches infinity, we get E0

[∫∞
0 e−rs

(
κdN I

s

)]
= E0 [limt→∞Gt] ≥

G0 = Kθ0(U0). Hence, any incentive-compatible maximal-compliance mechanism leads to

weakly higher inspection costs.

B.2.3 Optimality in the original problem

We now consider the original model, in which we remove Assumption A so that the honesty

constraint must hold in both states. We show that during noncompliance, the honesty

constraint does not bind, and therefore, the solution of the relaxed problem is also a solution

to our original problem. The proof is constructive. In the optimal mechanism of the

relaxed problem, the pair of promised utilities at the outset and during noncompliance

is (u0, u1) := (ū, ū − c/(λα)). Since dU0
t ≤ 0, we have U0

t ≤ u0. Set dFt = u0 − U0
t

and dµt = u1 − U1
t + u0 − U0

t . Next, while θ = 0, set dFt = −ru0 + λα(u1 − u0) and

dµt = c+(r+λ)(u1−u0). Substituting into the promise-keeping and truthtelling constraints,

it follows that dU it = 0 for each i = 0, 1 and dN I
t = 0 while θt = 0, which is identical to the

35See Davis, 1993, pp. 27-33.
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solution in the relaxed problem.

Proof of Lemma 3

Define

Ψ(T ) ≡ (B − c/r) (1− e−rT )− c/(λα)eλT (erT − α) + c/(λα)(1− α).(20)

By Theorem 1, we have T ∗ = inf{T > 0 : Ψ(T ) = 0}. This exists and is unique whenever

B > B̄ (Ψ is increasing from 0 at T = 0 and crosses 0 from above exactly once). The

function Ψ is continuously differentiable in λ and T on a neighbourhood of T ∗. By the

implicit function theorem we have

∂T ∗

∂λ
= −Ψλ

ΨT

∣∣∣∣
T=T ∗

,

where Ψx denotes the partial derivative of Ψ with respect to x. As mentioned above, Ψ(T )

crosses 0 from above at T = T ∗ so that ΨT |T=T ∗ < 0. Hence, for all parameters, we have

sign

(
∂T ∗

∂λ

)
= sign

(
Ψλ|T=T ∗

)
.

Consider Ψ in (20) as λ↘ λ = cr/(Brα− c), which is the lower bound on λ such that

the feasibility assumption B > B̄ = c(r+λ)
rλα is fulfilled. Ψ is then equal to

(B − c

r
)(1− e−rT )−

(
B − c

rα

)(
eλT (erT − α)− (1− α)

)
.

This can be equal to 0 only if T = 0 because it is concave in T and the T -derivative is

0 at T = 0. Hence, limλ↓λ T ∗(λ) = 0 and T ∗ is initially increasing in λ.

Finally, to show that T ∗(λ)
λ→∞−→ 0 consider (20) and observe that Ψ(T ∗) = 0 implies

lim
λ→∞

e(r+λ)T
∗(λ)

λ
= 0.

This implies that λT ∗(λ) is either finite or grows at lower than logarithmic rate as λ becomes

arbitrarily large. In particular, T ∗(λ) must go to 0.

Considering the costs, let Let K0
EQ and K1

EQ denote the expected discounted inspection

cost when starting in state 0 or 1, respectively. For fixed inspection cycle length, T , they
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follow the following nested equations

K0
EQ =

∫ ∞
0

e−(r+λα)tλαK1
EQ dt =

λα

r + λα
K1
EQ

and

K1
EQ =

∫ T

0
e−(r+λ(1−α))tλ(1− α)K0

EQ dt+ e−(r+λ(1−α))T
(
κ+K1

EQ

)
=
(

1− e(r+λ(1−α))T
) λ(1− α)

r + λ(1− α)
K0
EQ + e−(r+λ(1−α))T

(
κ+K1

EQ

)
Inserting K0

EQ and solving for K1
EQ gives

K1
EQ =

r + λα

r(r + λ)
· (r + λ(1− α))

e−(r+λ(1−α))T

1− e−(r+λ(1−α))T · κ.

Note that K1
EQ is decreasing in T and decreasing in λ for fixed T . Thus, given that

T ∗ is increasing in λ for low λ, it follows immediately that the costs decrease for low λ.

Further, K1
EQ approaches ∞ as T goes to zero for any positive and finite λ. Since

lim
λ↘λ

T ∗(λ) = 0,

it follows that

lim
λ↘λ

KEQ(λ) = 0.

For the limit as λ grows arbitrarily large, not that the total cost in the limit is given by

lim
λ→∞

K1
EQ =

(1− α)α

r
lim
λ→∞

λ

e(1−α)λT ∗(λ)
.

Recall from above that λT ∗(λ) grows to ∞ at lower than logarithmic rate so that the term

above must be ∞.

Appendix C: Proofs for Section 5

Proof of Theorem 2. We first argue that at the mechanism described in the main text

is optimal among the class of stationary mechanisms, consider an alternative stationary

stochastic mechanism that delivers some given promised utility u. From the promise-keeping

constraint (Pk) and the honesty constraint (H) for i = 1, it is straightforward to obtain that

the constant rate mR(u) of inspection that keeps the promised utility in state 1 stationary
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at the level u ∈ [−B + c/(λα),−c/(rα)] is mR(u) = r(c− αλu)/(αλ(B + u)− c).
The principal’s expected monitoring costs in the stationary random mechanism that

provides promised utility U1
t = u throughout can be determined recursively. Denoting by

K1
R(u) the expected costs while in compliance, we have

K1
R(u) =

r + λα

r

mR(u)

r + λ
=
r + λα

r

r(c− αλu)

(r + λ)(αλ(B + u)− c) .(21)

It is easy to see that KR(u) is decreasing in u. Given that − c
rα is an upper bound on the

promised utility for the agent during compliance (it is the maximum payoff for the agent

subject to satisfying the obedience constraint), and it is the promised utility delivered by

the mechanism characterized above, it follows that this mechanism is indeed the optimal

stationary mechanism.

To show that the costs of the random mechanism are strictly below the equilibrium

costs with predictable inspections express the latter as

K0
EQ =

∫ ∞
0

e−(r+λ)tλ
(
αK1

EQ + (1− α)K0
EQ

)
dt and

K1
EQ =

∫ ∞
0

e−(r+λ)tλ
(
αK̃1(τt) + (1− α)K0

EQ

)
dt+

∞∑
n=1

e−(r+λ)kT
∗
κ,

where K0
EQ denotes the expected costs while in noncompliance and

K̃1(τ) = e−(r+λ(1−α))(T
∗−τ)(κ+K1

EQ) +

∫ T ∗

τ
e−(r+λ(1−α))(s−τ)λ(1− α)K0

EQ ds

denotes the expected costs while in compliance and time τ ∈ [0, T ∗] has passed since the

last inspection or transition. Note that K̃1(τ) is increasing in τ with K̃1(0) = K1
EQ and

K̃1(T ∗) = κ+K1
EQ. Thus, replacing K̃1(τt) by K1

EQ in the recursive expression above, and

solving the system gives an upper bound on the equilibrium costs K1
EG:

K1
EQ ≤ K̃ =

r + λα

r

e−(r+λ)T
∗

1− e−(r+λ)T ∗ κ.(22)

To see that K1
R in (21) is lower, use Equation (7) to write T ∗ in (22) as a function of u1∗:

K̃(u1∗) =
r + λα

r

e−(r+λ)T
∗

1− e−(r+λ)T ∗ κ =
r + λα

r

c

αλ(B + u1∗)− cκ.

Now it is immediate to check that K̃
(
− c
rα

)
= KR

(
− c
rα

)
and K̃ ′(u) < K ′R(u) for u < − c

rα

and B > B̄. Since −c/(rα) is an upper bound on u, it follows that KR(u1∗) < K̃(u1∗). It
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follows from (22) that K1
EQ > K1

R.

For the comparative statics in λ, consider (21) and observe that K1
R is decreasing in

λ for fixed mR and decreasing in mR(u). The optimal promised utility −c/(rα) does not

change with λ and mR(u) is decreasing in λ for any u.

For the limit, observe that

lim
λ→∞

mR(− c

rα
) =

cr

Brα− c .

And, thus,

lim
λ→∞

K∗R =
α

r

cr

Brα− cκ =
cα

Brα− cκ.
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Online Appendix: Additional material

ON-A Strategies and outcomes

This part of the appendix contains the formal restrictions on the players’ strategy spaces

to ensure that any combination of strategies leads to a unique and well-defined outcome.

To this end, it is convenient to have an exogenous underlying stochastic process that

governs the arrival of shocks and, given the agent’s effort, determines the state of compliance.

Let (Ω,F , P ) be a probability space. Let the marked point process z = {zt}t≥0 represent

the arrival of random shocks, where zt = 0 except at isolated times t0 < t1 < . . . which

arrive at constant rate λ > 0. At each random time tj with j ∈ N, the value of the

shock ztj is independently and uniformly distributed on [0, 1]. Let {Ft} be the natural

filtration generated by z. The state of compliance {θt}t≥0 is constant between shocks, and

immediately after the arrival of a shock at time tj , we have θtj = 1 if αηtj ≥ ztj , and θtj = 0

if αηtj < ztj .

A history at time t is a collection of paths

ht = {ηs, θs, θ̂s, N I
s , Fs}s∈[0,t],

where (ηs, θs, θ̂s, N
I
s , Fs) ∈ [0, 1]× {0, 1} × {0, 1} × N0 × R+.

Throughout, we denote strict histories for which the realization at time t is excluded by

ht−. Let Ht be the set of all time-t histories and Ht− the set of all strict histories. Let

H =
⋃
t≥0Ht and H− =

⋃
t≥0Ht−.

The agent’s strategy specifies efforts and reports as functions of histories. A strategy

for the agent is defined as a pair (e, ρ) = ({et, ρt}t≥0) with

et : Ht− → [0, 1], ρt : Ht− × {0, 1} → {0, 1},

where et(ht−) is the agent’s effort at time t and ρt(ht−, θt) is the agent’s report at time t

after history ht− when the state at time t is θt. Note that while the agent submits a report

regarding compliance continually, at every t ≥ 0, this is for notational convenience only.

It is equivalent and most natural for most applications to think of the agent as sending

messages only sporadically to report transitions in compliance. To capture the principal’s

uncertainty about the agent’s effort choices and the true state of compliance, consider a

1



partition HPt of the history set Ht which comprises all subsets of Ht whose elements are

indistinguishable to the principal. Define the partition HPt− similarly for strict histories at t.

To allow for randomized inspections, we equip the principal with a (private) random signal

π, defined on a sufficiently rich probability space with state space Π. A strategy for the

principal is defined as a pair (n, f) = ({nt, ft}t≥0) of mappings

nt : Π×Ht− × {0, 1} → {0, 1}, ft : Ht− × {0, 1}3 → R+,

which are constant on every HP
t− ∈ HPt− for each t ≥ 0, where ft is required to be weakly

increasing over time. Here, nt(π, ht−, θ̂t) is equal to 1 if an inspection is performed at

time t and equal to 0 otherwise. By ft(ht−, θt, θ̂t, dN I
t ) we denote the cumulative fine

imposed by the principal at time t. We abuse notation slightly and write ft(ht) instead

of ft(ht−, θt, θ̂t, dN I
t ) whenever there is no danger of confusion. The exit decision for each

player at any history is a binary variable indicating whether this player decides to exit or

not. For the ease of exposition, we do not introduce additional notation for these choices;

they translate into lower bounds on the expected payoffs of the players in the equilibrium

definition below. The strategies above are to be understood as conditional on no player

having exited previously. Actions to be chosen after one player exited are irrelevant.

To ensure that any strategy profile results in a unique and well-defined process of actions,

we adopt the approach by Kamada and Rao (2023) and require that actions are not changed

’too frequently’ on any time interval. To apply this approach, first restrict the strategy

spaces for the fine and effort choices. A history ht ∈ Ht, has an intervention for the agent

at time t if either t = 0, or if t > 0 and at least one of the following holds: (i) θt − θt− 6= 0,

(ii) θ̂t − θ̂t− 6= 0, (iii) N I
t − N I

t− 6= 0. Similarly, there is an intervention for the principal

if either t = 0, or if t > 0 and at least one of the properties (ii) and (iii) holds. No new

information arrives in between interventions. We restrict the principal’s fine strategy to

reflect this, and require that it be predictable in between inspections. Formally, for any two

histories htandh
′
t: ft(ht) 6= ft(h

′
t) only if there exists τ ≤ t such that τ is an intervention

time for the principal and the truncation of the above histories at time τ , hτ and h′τ , are

distinguishable for the principal. In other words, this restriction requires the principal’s

fines to be specified pathwise; at each intervention, it is fully specified how fines proceed

until another intervention arrives. Similarly, we restrict the agent’s effort strategy to be

predictable in between interventions: For any two histories ht−, h′t−: et(ht−) 6= et(h
′
t−) only
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if there exists τ < t such that τ is an intervention time for the agent and hτ 6= h′τ . Based

on Kamada and Rao (2023), we require all strategies to fulfil the properties traceability and

frictionality as defined below. Lemma E then shows that any combination of strategies from

this class yields a well-defined and unique outcome path. A history h is said to be consistent

with the agent’s strategy (e, ρ) at time t if ρt(ht−, θt) = θ̂t and et(ht) = ηt. Similarly, a

history h is consistent with the principal’s strategy (n, f) at time t if nt(π, ht−, θ̂t) = dN I
t

and ft(ht) = dFt.

Definition 1. The agent’s strategy (ρ, e) is traceable if for any time-t history ht and any

principal-action path {N I
s , Fs}s≥0 that coincides with ht for all s < t, there is a continuation

path {θ̂s, ηs}s≥t that is consistent with (ρ, e). Analogously, The principal’s strategy (n, f) is

traceable if for any time-t history ht and any agent-action path {θ̂s, ηs}s≥0 that coincides

with ht for all s < t, there is a continuation path {N I
s , Fs}s≥t that is consistent with (n, f).

Definition 2. The agent’s strategy (ρ, e) is frictional if for any time-t history ht, there

is conditional probability one that the report path {θ̂s}s≥t has only finitely many report

changes on any finite interval [t, u] for all paths {ηs, θ̂s}s≥t such that there is a principal-

action path {N I
s , Fs}s≥t for which the history

(
ht−, {N I

s , Fs}s≥t, {ηs, θ̂s}s≥t
)

is consistent

with the agent’s strategy. Analogously, the principal’s strategy (n, f) is frictional if for any

time-t history ht, there is conditional probability one that the inspection path {Ns}s≥t has

only finitely many inspections on any finite interval [t, u] for all paths {N I
s , Fs}s≥t such that

there is an action path {ηs, θ̂s}s≥t for which the history
(
ht−, {N I

s , Fs}s≥t, {ηs, θ̂s}s≥t
)

is

consistent with the principal’s strategy.

Lemma E (Existence and Uniqueness of consistent Outcome Path). Given any possible his-

tory hu− =
{
π0, zt, ηt, θ̂t, N

I
t , Ft

}
t∈[0,u)

∪ {ηu}, any combination of strategies ((e, ρ), (n, f))

that are traceable and frictional yields a unique consistent path
(
{ηt}t∈(u,∞), {θ̂t, N I

t , Ft, }t∈[u,∞)

)
almost surely.

Proof. The proof proceeds in two steps. First we show uniqueness and then existence.

Step 1: Uniqueness. Fix a pair of strategies, a history up to u, and any realiza-

tion of the shock process {zt}t∈[u,∞). Suppose there are two distinct continuation paths

x = {ηxt , θ̂xt , N Ix
t , F xt }t∈[u,∞) and y = {ηyt , θ̂yt , N Iy

t , F yt }t∈[u,∞) that are consistent with the
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strategies and the shock path. Let t = inf{t ≥ u : xt 6= yt} be the first time at which

the processes differ. Strategy e maps history hA
tAk

into a deterministic process {ηs}s∈(tAk ,∞)

only for times tAk at which an intervention for the agent occurs. Likewise, strategy f maps

history htPk
into a deterministic process {Fs}s∈[tPk ,∞) for times tPk with an intervention for

the principal. Therefore, if ηxs 6= ηys for s > u or F xs 6= F ys for s ≥ u, then there must also

be a time t ≤ s with an intervention at t, i.e. ∃n ∈ N s.t. t = tAk or t = tPk . Furthermore,

we must have hxt 6= hyt at this intervention. With probability 1, the realization {zt}t∈[u,∞)

has only finitely many jumps on any closed interval. Hence, by frictionality, there are at

most finitely many interventions on any closed interval. Therefore, t defined above must

be an intervention time and the infimum is attained, i.e., xt 6= yt. We therefore must have

θ̂xt 6= θ̂yt or N Ix
t 6= N Iy

t and, as t is the first such time, hxt− = hyt−. As θ̂xt and θ̂yt both result

from the same strategy, this, however, implies that θ̂xt = θ̂yt , leaving as only possibility

that N Ix
t 6= N Iy

t . This contradicts consistency of both processes with the fixed strategy

(as hxt− = hyt−). Hence, any pair of traceable and frictional strategies gives at most one

consistent outcome.

Step 2: Existence. Existence of a consistent outcome path is shown constructively:

Start with arbitrary history hu− =
{
π0, zt, ηt, θ̂t, N

I
t , Ft

}
t∈[0,u)

∪ {ηu} and fix a realization

of the shock process {zt}t∈[u,∞). We apply the steps below iteratively until they give an

outcome path consistent with z and the strategies for t ≥ u: Define paths {η0t , θ̂0t , N I0
t , F

0
t }

equal to the history up to u and such that for t > u : η0t = et(hmaxk t
A
k <u

), and for t ≥ u:

θ̂0t = θ̂u−, N I0
t = N I

u− and dF 0
t = ft(hmaxk t

A
k <u

).36 Let n = 1 and t(1) = u.

i) By traceability, there are paths {ηnt , θ̂nt }t≥0 such that, for t < t(n): {θ̂nt , ηnt } =

{ηn−1t , θ̂n−1t } and that {ηnt , θ̂nt , N In−1

t , Fn−1t }t≥0 is consistent with the agent’s strategy

and process z for t ≥ t(n). Set {ηnt , θ̂nt } equal to these processes. Similarly, trace-

ability implies that there exist paths {N In
t , Fnt } with (N In

t , Fnt ) = (N In−1

t , Fn−1t ) for

t < t(n) and such that {ηnt , θ̂nt , N In
t , Fnt }t≥0 is consistent with the principal’s strategy

on t ≥ u. Set {N In
t , Fnt } equal to these processes and continue to step (ii).

ii) If {ηnt , θ̂nt , N In
t , Fnt } is consistent with the strategies for all t ∈ [u,∞), stop the pro-

36That is, report and inspections are held constant from u onward and fines and effort are chosen
according to the strategies (depending only on the last intervention before u) for the case that no
further interventions occur.
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cedure. The proof is complete. Otherwise, redefine n = n+ 1 and set t(n+ 1) equal

to the largest time v such that there is an intervention at v and {ηnt , θ̂nt , N In
t , Fnt } is

consistent with the strategies for all t ∈ [u, v), go to step (i).

If the above procedure stops after finite n, that’s because of having given a consistent

process and the proof is complete. In the case in which it does not stop after finitely many

iterations,

lim
n→∞

{ηnt , θ̂nt , N In

t , Fnt }t≥0

is consistent with the strategies on [u,∞) with probability one. To see this, note that for

every n, t(n + 2) > t(n). Given that, with probability one, any finite interval has only

finitely many interventions, limn→∞ t(n) = ∞ which implies consistency of the resulting

process for all t ∈ [u,∞).

ON-B Martingale representation of promised utility

Proof of Lemma A. Denote by F the filtration generated by the random processes θ, θ̂

and νI . Define

Wt :=

∫ t

0
e−rs(−dFs − cηs ds) + e−rtUt.

The corresponding representation in differential form is

dWt = e−rt(−dFt − cηt dt)− re−rtUt + e−rt dUt.(23)

The process {Wt} is an F-martingale by construction. By the martingale representation

theorem for marked point processes (Last and Brandt, 1995, Theorem 1.13.2), there exist

F-predictable functions ∆̃θ
t , ∆̃θ̂

t and ∆̃I
t such that

dWt =
∑

a∈{θ,θ̂,I}
∆̃a
t (dN

a
t − dνat )(24)

Replacing ∆̃a
t = e−rt∆a

t and then equating (23) and (24) yields

dUt = rUt dt+ dFt + cηt dt+
∑

a∈{θ,θ̂,I}
∆a
t (dN

a
t − dνat ).

This is the representation of the evolution of promised utilities shown in the lemma.
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ON-C Proof of Lemma C with left-open support

In this section, we show how the arguments in the proof of Lemma C extend to the case in

which t0 /∈ T . First, note that if its infimum t0 is not contained in the set T , then for any

δ > 0, we can find an ε ∈ (0, δ) such that t0 + ε ∈ T . Further, by choosing δ small enough,

we can ensure that the expected inspection probability
∫ t0+δ
t0 dνIs becomes arbitrarily small.

In the first case with U0
t0 > −B, there exists an ε > 0 small enough such that t0 + ε ∈ T

and also U0
t0+ε > −B by right-continuity of U0

t . In this case we can apply the argument

above to schedule a predictable inspection at time t0 + ε. To satisfy the agent’s incentive

constraints, this modification is paired either with an additional fine after a high report

at t0 + ε or with an additional transition fine for any transition at times s ∈ [t0, t0 + ε),

depending on the sign of ∆I
t0+ε. In the second case with U0

s = −B, on [t0, t0 + δ) for some

δ > 0, then by ∆I
s > −B − U0

s , we have that ∆I
t0+ε > 0. In this case, we can proceed in a

similar way as above and introduce an additional fine to compensate for the increase in the

agent’s expected payoff caused by performing the inspection with probability 1 and keep the

path of persistent payoffs U1
s unchanged for s ≤ t0. However, to ensure that the obedience

and honesty constraints are also satisfied on (t0, t0 + ε], the fine is increased gradually on

the interval (t0, t0 + ε). Specifically, construct the fine such that the honesty constraint (H)

binds (with U0
s = −B):

0 = −rB dt− λα(U1
s +B) dt+ dFt + cdt.(25)

In the promise-keeping constraint (Pk), substituting for dFs with the binding honesty

constraint (25) and inserting U0
s = −B determines the evolution of U1

s on (t0, t0 + ε) via

the differential equation

û′s = (r + λ)(ûs +B).

We keep the persistent utility at t0 unchanged, so the initial condition for the ODE is

ût0 = U1
t0 , which leads to the solution

ûs = U1
t0e

(r+λ)(s−t0) +B
(
e(r+λ)(s−t

0) − 1
)
,

for s ∈ [t0, t0 + ε). To ensure, that this trajectory of persistent utility is feasible, we verify

that the fine dFs is positive and that the solution ût0+ε does not exceed U1
t0+ε+ ∆I

t0+ε from

the original equilibrium. The latter is necessary to reach U1
t0+ε + ∆I

t0+ε as the continuation
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payoff after inspection at t0 + ε. For the fine, (25) with U1
s = ûs gives

dFs
dt

= −c+ rB + λα(ûs +B) = −c+ rB + λα(U1
t0 +B)e(r+λ)(s−t

0).

This term is decreasing in s and therefore smallest at s = t0, where it is positive if

(r + λα)B + λαU1
t0 ≥ c.

For the original equilibrium to satisfy the obedience constraint we must have U1
t0 ≥ −B+ c

λα ,

so that the above inequality must be satisfied and the fines are positive. To check that ût0+ε

constructed above does not lie above U1
t0+ε + ∆I

t0+ε from the original equilibrium, note that

the inspections in the original equilibrium had no effect on the honesty constraint (H) as,

by assumption, we are in the case U0
s = −B. Therefore, as the original equilibrium satisfied

the honesty constraints, the evolution of ûs, which was constructed by making the honesty

constraint binding, must lie weakly below the original U1
s and therefore ût0+ε ≤ U1

t0+ε+∆I
t0+ε

since ∆I
t0+ε is positive by ∆I

t0+ε > −B−U0
t0 = 0. Hence, the newly constructed equilibrium

includes a fine at inspection time t0 + ε of Û1
t0+ε − (U1

t0+ε + ∆I
t0+ε) so that the persistent

utility increases to the one from the original continuation equilibrium after inspection at

time t0 + ε.
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